学了1年大数据,来测测你大数据技术掌握程度?大数据综合复习之面试题15问(思维导图+问答库)

本文主要是介绍学了1年大数据,来测测你大数据技术掌握程度?大数据综合复习之面试题15问(思维导图+问答库),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我正在参加年度博客之星评选,请大家帮我投票打分,您的每一分都是对我的支持与鼓励。

2021年「博客之星」参赛博主:Maynor大数据 (感谢礼品、红包免费送!)

https://bbs.csdn.net/topics/603955366

在这里插入图片描述

在这里插入图片描述

前言

大家好,我是ChinaManor,直译过来是中国码农的意思,我希望自己能成为国家复兴道路的铺路人,大数据领域的耕耘者,平凡但不甘于平庸的人。

时隔一年,终于把主流的大数据组件全部学完了,学成之时,便是出师之日,
那为师便来考考你学的如何:
在这里插入图片描述

问题1:Rowkey如何设计,设计规则是什么?

  • 业务原则:贴合业务,保证前缀是最常用的查询字段
  • 唯一原则:每条rowkey唯一表示一条数据
  • 组合原则:常用的查询条件组合作为Rowkey
  • 散列原则:rowkey构建不能连续
  • 长度原则:满足业务需求越短越好

口诀:月尾煮散肠
又到了月尾业务达不到,唯一不挨饿的办法是煮超市散落的香肠吃。

问题2:请简述Hbase写入数据的流程

在这里插入图片描述

  • step1:获取元数据

    • 客户端请求Zookeeper,获取meta表所在的regionserver的地址
    • 读取meta表的数据:获取所有表的元数据
  • step2:找到对应的Region

    • 根据meta表中的元数据,找到表对应的所有的region
    • 根据region的范围和写入的Rowkey,判断需要写入具体哪一个Region
    • 根据region的Regionserver的地址,请求对应的RegionServer
  • step3:写入数据

    • 请求RegionServer写入对应Region:根据Region的名称来指定写入哪个Region

    • 根据列族判断写入哪一个具体的Store

      • 先写入WAL:Hlog预写日志中
    • 写入对应Store的MemStore中

问题3:协处理器是什么?Hbase中提供了几种协处理器?

  • 协处理器指的是Hbase提供了一些开发接口,可以自定义开发一些功能集成到Hbase中
  • 类似于Hive中的UDF
  • 协处理器分为两类
    • Observer:观察者类,类似于监听器的实现
    • Endpoint:终端者类,类似于存储过程的实现

以上面试题出自之前发布的Hbase专栏
Hbase专栏链接

问题4:为什么Kafka读写会很快?

  • 写很快
    • 应用了PageCache的页缓存机制
    • 顺序写磁盘的机制
  • 读很快
    • 优先基于PageCache内存的读取,使用零拷贝机制
    • 按照Offset有序读取每一条
    • 构建Segment文件段
    • 构建index索引

问题5:请简述Kafka生产数据时如何保证生产数据不丢失?

image-20210712075954243

  • acks机制:当接收方收到数据以后,就会返回一个确认的ack消息
  • 生产者向Kafka生产数据,根据配置要求Kafka返回ACK
    • ack=0:生产者不管Kafka有没有收到,直接发送下一条
      • 优点:快
      • 缺点:容易导致数据丢失,概率比较高
    • ack=1:生产者将数据发送给Kafka,Kafka等待这个分区leader副本写入成功,返回ack确认,生产者发送下一条
      • 优点:性能和安全上做了平衡
      • 缺点:依旧存在数据丢失的概率,但是概率比较小
    • ack=all/-1:生产者将数据发送给Kafka,Kafka等待这个分区所有副本全部写入,返回ack确认,生产者发送下一条
      • 优点:数据安全
      • 缺点:慢
      • 如果使用ack=all,可以搭配min.insync.replicas参数一起使用,可以提高效率
        • min.insync.replicas:表示最少同步几个副本以后,就返回ack
  • 如果生产者没有收到ack,就使用重试机制,重新发送上一条消息,直到收到ack

问题6:Kafka中生产者的数据分区规则是什么,如何自定义分区规则?

在这里插入图片描述

  • 如果指定了分区:就写入指定的分区
  • 如果没有指定分区,就判断是否指定了Key
    • 如果指定了Key:根据Key的Hash取余分区
    • 如果没有指定Key:根据黏性分区来实现
  • 自定义分区
    • 开发一个类实现Partitioner接口
    • 实现partition方法
    • 在生产者中指定分区器的配置

以上面试题出自之前发布的Kafka专栏
Kafka专栏链接

问题7:简述Spark on yarn的作业提交流程(YARN Cluster模式)

在这里插入图片描述

image-20210712105834107

1、任务提交后会和ResourceManager通讯申请启动ApplicationMaster
2、随后ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster,此时的ApplicationMaster就是Driver。
3、Driver启动后向ResourceManager申请Executor内存
4、ResourceManager接到ApplicationMaster的资源申请后会分配container,然后在合适的NodeManager上启动Executor进程
5、Executor进程启动后会向Driver反向注册
6、Executor全部注册完成后Driver开始执行main函数,之后执行到Action算子时,触发一个job,并根据宽依赖开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。

问题8:简述Spark on yarn的作业提交流程(YARN Client模式)

image-20210712105733649

1、Driver在任务提交的本地机器上运行,Driver启动后会和ResourceManager通讯申请启动ApplicationMaster
2、随后ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster
3、此时的ApplicationMaster的功能相当于一个ExecutorLaucher,只负责向ResourceManager申请Executor内存
4、ResourceManager接到ApplicationMaster的资源申请后会分配container,ApplicationMaster在资源分配指定的NodeManager上启动Executor进程
5、Executor进程启动后会向Driver反向注册
6、Executor全部注册完成后Driver开始执行main函数,之后执行到Action算子时,触发一个job,并根据宽依赖开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。

问题9:Repartition和Coalesce关系与区别

1)关系:

两者都是用来改变RDD的partition数量的,repartition底层调用的就是coalesce方法

2)区别:

repartition一定会发生shuffle,coalesce根据传入的参数来判断是否发生shuffle

一般情况下增大rdd的partition数量使用repartition,减少partition数量时使用coalesce

问题10:cache和pesist的区别?

cache和persist都是用于将一个RDD进行缓存的,这样在之后使用的过程中就不需要重新计算了,可以大大节省 程序运行时间

1) cache只有一个默认的缓存级别MEMORY_ONLY ,cache调用了persist,而persist可以根据情况设置其它的缓存级别;

2) executor执行的时候,默认60%做cache,40%做task操作,persist是最根本的函数,最底层的函数。

以上面试题出自之前发布的Spark专栏
Spark专栏链接

问题11:flink中的水印机制?

1、首先什么是Watermaker?
Watermaker就是给数据再额外的加的一个时间列,也就是Watermaker是个时间戳!
2、其次如何计算Watermaker?
Watermaker = 当前窗口的最大的事件时间 - 最大允许的延迟时间或乱序时间
3、窗口计算的触发条件为:

  • 1.窗口中有数据
  • 2.Watermaker >= 窗口的结束时间

问题12:Flink的四大基石都有什么?

Checkpoint、State、Time、Window

问题13:Flink的重启策略有哪些?

固定延迟重启策略

失败率重启策略

回调重启策略

无重启策略

古诗会晤

固定的古诗会晤即将在沭阳举行

问题14:请描述一下flink的双流join

在这里插入图片描述

Flink Join大体分类只有两种:Window Join和Interval Join。

  • Window Join又可以根据Window的类型细分出3种:

Tumbling Window Join、
Sliding Window Join、
Session Widnow Join

Windows类型的join都是利用window的机制,先将数据缓存在Window State中,当窗口触发计算时,执行join操作。

  • interval join也是利用state存储数据再处理,区别在于state中的数据有失效机制。

问题15:flink on yarn执行任务的两种方式

在这里插入图片描述

第一种yarn seesion(Start a long-running Flink cluster on YARN)
这种方式需要先启动集群,然后在提交作业,接着会向yarn申请一块空间后,资源保持不变。
如果资源满了,下一个作业就无法提交,只能等到yarn中的其中一个作业执行完成后,释放了资源,那下一个作业才会正常提交.

比较适合特定的运行环境或者测试环境。

在这里插入图片描述

第二种Flink run直接在YARN上提交运行Flink作业(Run a Flink job on YARN),
一个任务会对应一个job,即每提交一个作业会根据自身的情况,向yarn申请资源,直到作业执行完成,
并不会影响下一个作业的正常运行,除非是yarn上面没有任何资源的情况下。
一般生产环境是采用此种方式运行

以上面试题出自之前发布的Flink专栏
Flink专栏链接

问答库已制作完成

在这里插入图片描述

问答库

总结

  		以上便是大数据综合复习之面试题15问,你都掌握了吗?![在这里插入图片描述](https://img-blog.csdnimg.cn/20210709105801106.png)

愿你读过之后有自己的收获,如果有收获不妨一键三连,我们下期再见👋·
在这里插入图片描述

这篇关于学了1年大数据,来测测你大数据技术掌握程度?大数据综合复习之面试题15问(思维导图+问答库)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/311169

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业