本文主要是介绍YOLOv8修改特征金字塔(替换SPPF模块),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1.引言
1.1 引言
修改特征金字塔模块,即SPPF模块是YOLOv8改进中非常常见的一个改进点。
以下将介绍如何在yolov8中修改SPPF模型。
2.2 常见特征金字塔模块
常见特征金字塔可以看此贴:常见特征金字塔模块代码实现
1.3 本文示例
本文使用SimSPPF模块作为示例,SimSPPF模块是美团YOLOv6提出的模块,与SPPF只相差了一个激活函数,将Silu激活函数改为了Relu激活函数,相比于SPPF模块速度更快,可以尝试一下。
2. 实验
2.1 block.py修改
以下是SimSPPF模块代码
class SimConv(nn.Module):'''Normal Conv with ReLU activation'''def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False):super().__init__()padding = kernel_size // 2self.conv = nn.Conv2d(in_channels,out_channels,kernel_size=kernel_size,stride=stride,padding=padding,groups=groups,bias=bias,)self.bn = nn.BatchNorm2d(out_channels)self.act = nn.ReLU()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class SimSPPF(nn.Module):'''Simplified SPPF with ReLU activation'''def __init__(self, in_channels, out_channels, kernel_size=5):super().__init__()c_ = in_channels // 2 # hidden channelsself.cv1 = SimConv(in_channels, c_, 1, 1)self.cv2 = SimConv(c_ * 4, out_channels, 1, 1)self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)def forward(self, x):x = self.cv1(x)with warnings.catch_warnings():warnings.simplefilter('ignore')y1 = self.m(x)y2 = self.m(y1)return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
放置到ultralytics/nn/modules/block.py代码中的最后,如下图。
然后再次文件开头__all__中添加SimSPPF
2.2 __ init__.py
修改此路径下的ultralytics/nn/modules/__ init__.py文件
如下图所示,添加相应的代码:
2.3 tasks.py
修改此路径下的ultralytics/nn/tasks.py文件
因为SimSPPF和SPPF属于同一种结构,因此,我们写到SPPF后面即可。
另外需要导包,快捷键alt+回车键即可。
2.4 模型更改
复制基础模型即可,将SPPF改为SimSPPF
以yolov8n。yaml为例,如下:
# Ultralytics YOLO 🚀, GPL-3.0 license# Parameters
nc: 1 # number of classes
depth_multiple: 0.33 # scales module repeats
width_multiple: 0.25 # scales convolution channels# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SimSPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
模型运行时只需要将模型修改为次路径即可。
这篇关于YOLOv8修改特征金字塔(替换SPPF模块)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!