专业人士处理大数据所需的技能

2023-10-30 18:50

本文主要是介绍专业人士处理大数据所需的技能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

专业人士处理大数据所需的技能

数据分析师的工作包括收集、清理、可视化信息块,并将原始数据转换或建模为营销人员、开发人员、会计师使用。数据分析师的工作流程是由组织的需求定义的,但最终的可交付成果总是相同的:结构良好且易于检索的数据。

数据分析师的工作包括收集、清理、可视化信息块,并将原始数据转换或建模为营销人员、开发人员、会计师使用。数据分析师的工作流程是由组织的需求定义的,但最终的可交付成果总是相同的:结构良好且易于检索的数据。

作为一名数据分析师,需要具有分析头脑、强大的数学技能和灵活性。虽然这主要是数据科学家的先决条件,但也需要一系列的编程知识。

根据Payscale公司发布的统计数据,数据分析师的年薪在37,232美元至79,596美元之间,而其薪酬可能因个人的组织和经验水平而异。

由于企业每天产生大量数据,对大数据分析师的需求很高。人们可以按照以下步骤开始数据分析工作。

对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解想学习的同学欢迎加入大数据学习qq群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系 

第1步:获得相关专业的大学学位

数据分析师开始在职业生涯的第一个举措是获得相关专业的大学学位。事实上,如果需要处理大量数据,则以下专业更受欢迎:

•统计

•信息技术

•计算机科学

•系统分析

•数学

•工程设计

这样的教育背景将为进一步开发数据分析技能打下良好的基础。统计和数据分析专业通常很难写出分析报告,但这不应该是人们最关心的问题。

第2步:获得支持大数据分析认证

除了获得相关专业的大学学位外,获得一些有助于验证技能的证书也是非常有益的,尤其是在这个行业没有太多经验的工作人员。

这些认证被雇主当作一种基准,以确定工作人员在行业标准方面的分析和解决问题的技能。而这些大数据分析师认证将包括以下课程:

•亚马逊网络服务(AWS)的大数据认证

•大数据的分析和优化证书

•Hortonworks认证助理(HCA)

•Cloudera认证专家(CCP)

•Cloudera认证助理(CCA)数据分析师

获得至少两份这样的证书将提高入职简历的含金量。在获得认证的同时,继续学习其他课程或获得更多的证书。获得这些认证肯定会在应聘第一份工作时派上用场。

第3步:为大数据分析开发正确的技能

随着大数据分析领域的不断扩展,人们越来越需要提高大数据分析中的分析和解决问题的能力。数据分析师的所有主要技能如下所述。

(1)数学/统计

如果对数据分析感兴趣,具备足够的数学和统计技能是实施的良好基础。考虑到处理大量数字这一事实,必须实现优秀的计算能力。然而,大多数人在大学期间都会主修这个领域,但学习这门课程总比什么都不学要好。

(2)编程技巧

特定的编程语言和工具广泛用于大数据分析。熟练使用所选行业中使用的关键编程语言,可以为职业入门提供支持。

提高分析和解决问题技能所需的编程语言和工具的一些示例:

•R - 该工具被专家广泛用于数据可视化和分析。R语言被认为是适度的工具,但是一旦掌握了这门语言,它就成了不可或缺的工具。

•Python - 专家更喜欢这种编程语言,主要有几个原因。在大数据分析中,Python编程语言可以方便地挖掘和分析数据。其具有广泛的功能主要它是开源软件,为人们创造了为该语言开发大量库的机会。

•Pandas是python中使用的库之一,用于从数据导入、处理、吸收和清理到使用其复杂的数据帧进行一些高级操作。大数据分析专家使用的相关python库有numpy、scipy、scilkit。学习pybrain并在机器学习中创建神经网络。

还其他一些有用的编程语言和工具可以提高大数据分析的技能水平和性能,其中包括SQL、Apache Hadoop、Apache Spark和NoSQl。

数据探索和数据挖掘技能

利用适当的工具探索非结构化数据,并识别其大小、特征、模式以及准确性,以及从现有数据库中提取有用信息的能力是大数据分析的全部本质。为了提高解决问题的能力,应该尝试将学到的知识运用到解决日常问题上。

可视化技能集

对于全面的技能集,可以尝试使用可用的大数据存储库来建立其实时可视化知识。 Tableau和Power BI是数据分析专家使用的可视化工具的示例。大多数情况下,企业会要求使用可理解的图形、图表或地图来表示检索到的数据。

最后的想法

建立与大数据相关的适当技能与获得该领域的具体经验和认证有很大关系。获得大学学位是一个很好的开始,而专注于开发上述技能,并获得与大数据相关的认证,可以有更多机会成为数据分析师的最高层。设定真正的目标和一致的实践可以使企业获得成功。以上提到的大多数工具都拥有一个强大的在线社区,既可以提供帮助又令人鼓舞。

对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解想学习的同学欢迎加入大数据学习qq群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系 

这篇关于专业人士处理大数据所需的技能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309916

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言