10 MIT线性代数-四个基本子空间 four fundamental subspaces

2023-10-30 08:01

本文主要是介绍10 MIT线性代数-四个基本子空间 four fundamental subspaces,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 四个子空间 Four subspaces (mxn)

列空间 Column space C(A) in R^{m}

零空间Nullspace N(A) in R^{n}

行空间Row space = all combs of rows = all combs of columns of AT= C(AT) in R^{n}

左零空间Left nullspace = Nullspace of AT = N(AT) = left nullspace of A in R^{m}

2. 基和维数 Basis& Dimension 

列空间 dim C(A)=r

零空间 dim N(A)=n-r

行空间

different col space but same row space

R的前r行阶梯型“行向量”就是矩阵A行空间C( AT )的一组基

Basis for row space is first r rows of R

左零空间 dim N(AT) = m-r

为找到左零空间的基,我们应用增广矩阵 

EA=R in chap. 2, R was I, Then E was A^{-1}

则矩阵E最下面的m-r个行向量使得矩阵A的行向量线性组合成为0

矩阵E的这m-r个行向量满足yTA=0,它组成了矩阵A左零空间的一组基

3. 新向量空间 New vector space

All 3x3矩阵构成的集合是一个向量空间,符合对于线性运算封闭,称之为M A+B, CA

subspace of  M:

upper triangular 上三角阵

symmetric matrices 对称阵

diagonal matrices 对角阵 对角阵是前两个子空间的交集,其维数为3,具有以下一组基 

概念延伸R^{n}\rightarrow R^{n\times n}

这篇关于10 MIT线性代数-四个基本子空间 four fundamental subspaces的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/306573

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

C 语言的基本数据类型

C 语言的基本数据类型 注:本文面向 C 语言初学者,如果你是熟手,那就不用看了。 有人问我,char、short、int、long、float、double 等这些关键字到底是什么意思,如果说他们是数据类型的话,那么为啥有这么多数据类型呢? 如果写了一句: int a; 那么执行的时候在内存中会有什么变化呢? 橡皮泥大家都玩过吧,一般你买橡皮泥的时候,店家会赠送一些模板。 上

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

Java 多线程的基本方式

Java 多线程的基本方式 基础实现两种方式: 通过实现Callable 接口方式(可得到返回值):

Java基础回顾系列-第一天-基本语法

基本语法 Java基础回顾系列-第一天-基本语法基础常识人机交互方式常用的DOS命令什么是计算机语言(编程语言) Java语言简介Java程序运行机制Java虚拟机(Java Virtual Machine)垃圾收集机制(Garbage Collection) Java语言的特点面向对象健壮性跨平台性 编写第一个Java程序什么是JDK, JRE下载及安装 JDK配置环境变量 pathHe

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n