傅立叶级数的意义--傅立叶级数是怎么来的

2023-10-30 05:36
文章标签 怎么 意义 级数 傅立叶

本文主要是介绍傅立叶级数的意义--傅立叶级数是怎么来的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写这篇文章的起因是14年有道题目:
请添加图片描述
本题实质上是考察傅立叶级数的意义,因此要求扩大为不能只拘泥于傅里叶级数的计算相关问题,故作此篇。

一、课本上的内容

  1. 傅立叶级数:
    设函数 f ( x ) f(x) f(x)是周期为 2 l 2l 2l的周期函数,且在 [ − l , l ] [-l,l] [l,l]上可积,则称
    a n = 1 l ∫ − l l f ( x ) c o s n π x l d x ( n = 0 , 1 , 2 , . . . ) a_n=\frac{1}{l}\int_{-l}^{l}f(x)cos\frac{n\pi x}{l}dx (n=0, 1, 2, ...) an=l1llf(x)coslxdx(n=0,1,2,...)
    b n = 1 l ∫ − l l f ( x ) s i n n π x l d x ( n = 0 , 1 , 2 , . . . ) b_n=\frac{1}{l}\int_{-l}^{l}f(x)sin\frac{n\pi x}{l}dx (n=0, 1, 2, ...) bn=l1llf(x)sinlxdx(n=0,1,2,...)
    f ( x ) f(x) f(x)的以 2 l 2l 2l为周期的傅立叶系数,称级数
    a 0 2 + ∑ n = 1 ∞ ( a n c o s n π x l + b n s i n n π x l ) \frac{a_0}{2}+\sum_{n=1}^\infty (a_ncos\frac{n\pi x}{l}+b_nsin\frac{n\pi x}{l}) 2a0+n=1(ancoslx+bnsinlx)
    f ( x ) f(x) f(x)的以 2 l 2l 2l为周期的傅立叶级数,记作
    f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n c o s n π x l + b n s i n n π x l ) f(x)\sim \frac{a_0}{2}+\sum_{n=1}^\infty (a_ncos\frac{n\pi x}{l}+b_nsin\frac{n\pi x}{l}) f(x)2a0+n=1(ancoslx+bnsinlx)
  2. 狄利克雷收敛定理
    f ( x ) f(x) f(x)是以 2 l 2l 2l为周期的可积函数,若在 [ − l , l ] [-l,l] [l,l]上满足:1)连续或只有有限个第一类间断点;2)至多只有有限个极值点,
    f ( x ) f(x) f(x)的傅立叶级数在 [ − l , l ] [-l,l] [l,l]上处处收敛,记其和函数为 S ( x ) S(x) S(x),则
    S ( x ) = { f ( x ) , x 为连续点, f ( x − 0 ) + f ( x + 0 ) 2 , x 为间断点, f ( − l + 0 ) + f ( l − 0 ) 2 , x = ± l . S(x)=\begin{cases}f(x),&x\text{ 为连续点,}\\[2ex]\dfrac{f(x-0)+f(x+0)}{2},&x\text{ 为间断点,}\\[2ex]\dfrac{f(-l+0)+f(l-0)}{2},&x=\pm l.\end{cases} S(x)= f(x),2f(x0)+f(x+0),2f(l+0)+f(l0),x 为连续点,x 为间断点,x=±l.
  3. 正弦级数和余弦级数
    f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n c o s n π x l + b n s i n n π x l ) f(x)\sim \frac{a_0}{2}+\sum_{n=1}^\infty (a_ncos\frac{n\pi x}{l}+b_nsin\frac{n\pi x}{l}) f(x)2a0+n=1(ancoslx+bnsinlx)
    { a 0 = 1 l ∫ − l l f ( x ) d x a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x , n = 1 , 2 , . . . b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x , n = 1 , 2 , . . . \begin{cases}a_0=\frac{1}{l}\int_{-l}^lf(x)dx \\[2ex]a_n=\frac{1}{l}\int_{-l}^lf(x)\cos \dfrac{n\pi x}{l}dx,n=1,2,... \\[2ex]b_n=\frac{1}{l}\int_{-l}^lf(x)\sin \dfrac{n\pi x}{l}dx,n=1,2,... \end{cases} a0=l1llf(x)dxan=l1llf(x)coslxdx,n=1,2,...bn=l1llf(x)sinlxdx,n=1,2,...
    • 当f(x)为奇函数时,其展开式是正弦级数
      f ( x ) ∼ ∑ n = 1 ∞ b n s i n n π x l , b n = 2 l ∫ 0 l f ( x ) s i n n π x l d x , n = 1 , 2 , . . . f(x)\sim \sum_{n=1}^\infty b_nsin\frac{n\pi x}{l},b_n=\frac{2}{l}\int_0^lf(x)sin\frac{n\pi x}{l}dx,n=1, 2, ... f(x)n=1bnsinlxbn=l20lf(x)sinlxdx,n=1,2,...
    • 当f(x)为偶函数时,其展开式是余弦级数
      f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n π x l f(x)\sim \frac{a_0}{2}+\sum_{n=1}^\infty a_n\cos \frac{n\pi x}{l} f(x)2a0+n=1ancoslx
      a 0 = 2 l ∫ 0 l f ( x ) d x , a n = 2 l ∫ 0 l f ( x ) cos ⁡ n π x l d x , n = 1 , 2 , . . . a_0=\frac{2}{l}\int_{0}^lf(x)dx,a_n=\frac{2}{l}\int_0^lf(x)\cos \frac{n\pi x}{l}dx, n=1, 2, ... a0=l20lf(x)dx,an=l20lf(x)coslxdx,n=1,2,...

二、傅立叶级数是怎么来的

一个函数可以由若干三角函数的和来逼近,即
f ( x ) ≈ c 1 g 1 ( x ) + c 2 g 2 ( x ) + . . . + c n g n ( x ) f(x)\approx c_1g_1(x)+c_2g_2(x)+...+c_ng_n(x) f(x)c1g1(x)+c2g2(x)+...+cngn(x)
那么如何才能找到最合适的解,使得上式约等于符号左右两边最大限度地逼近呢?

做法是使二者的均方误差最小,即令下式最小:
ϵ 2 = 1 x 2 − x 1 ∫ x 1 x 2 [ f ( x ) − ∑ j = 1 n c j g i ( x ) ] 2 d x \epsilon^2=\frac{1}{x_2-x_1}\int_{x_1}^{x_2}[f(x)-\sum_{j=1}^nc_jg_i(x)]^2dx ϵ2=x2x11x1x2[f(x)j=1ncjgi(x)]2dx
即令下式为零
∂ ϵ 2 ∂ c j = 0 \frac{\partial \epsilon^2}{\partial c_{j}}=0 cjϵ2=0
(这里详细的推导有空再写)
总之求导并使导数为零后,就能求出来傅立叶系数的值,因此也就有了最终的傅立叶级数的格式。

换句话来说,已知周期函数可用一系列三角函数之和来表示,这个和式就是傅立叶级数,而三角函数前面的系数就是傅立叶系数。傅立叶系数的选择,是为了使 I n = ∫ − π π [ f ( x ) − f n ( x ) ] 2 d x I_n=\int_{-\pi}^\pi [f(x)-f_n(x)]^2dx In=ππ[f(x)fn(x)]2dx达到最小

三、一些结论和回归本题

由上可知傅立叶级数的本质是用一系列三角函数去逼近一个周期函数。

了解这个之后,对于上面的题目,可以很轻松地看出等号右面的式子就是在算 f ( x ) = x f(x)=x f(x)=x g ( x ) = a c o s x + b s i n x g(x)=acosx+bsinx g(x)=acosx+bsinx这两个函数的逼近程度。取min值,就是在找最逼近的情况下,三角函数之前的系数是多少。

而由上可知,傅立叶级数的推导过程(实质上是傅立叶系数的推导过程),就是在令导数为零后求其系数值。也就是在求最逼近的一系列三角函数,其前面的系数是多少。

因此知这道题就是在求傅立叶系数。

再由项的数量和 cos ⁡ n π x l = cos ⁡ x \cos\frac{n\pi x}{l}=\cos x coslx=cosx可知让算的是n=1时的傅立叶系数(即正如题目中的名字一样,是傅立叶系数中的 a 1 a_1 a1 b 1 b_1 b1

由公式知
a 1 = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x = 1 π ∫ − π π x cos ⁡ x d x = 0 a_1=\frac{1}{l}\int_{-l}^{l}f(x)\cos \frac{n\pi x}{l}dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\cos xdx=0 a1=l1llf(x)coslxdx=π1ππxcosxdx=0
b 1 = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x = 1 π ∫ − π π x sin ⁡ x d x = 2 b_1=\frac{1}{l}\int_{-l}^{l}f(x)\sin \frac{n\pi x}{l}dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\sin xdx=2 b1=l1llf(x)sinlxdx=π1ππxsinxdx=2
所以得 a 1 cos ⁡ x + b 1 sin ⁡ x = 2 sin ⁡ x a_1\cos x+b_1\sin x=2\sin x a1cosx+b1sinx=2sinx,故选A

这篇关于傅立叶级数的意义--傅立叶级数是怎么来的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305909

相关文章

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

macOS怎么轻松更换App图标? Mac电脑图标更换指南

《macOS怎么轻松更换App图标?Mac电脑图标更换指南》想要给你的Mac电脑按照自己的喜好来更换App图标?其实非常简单,只需要两步就能搞定,下面我来详细讲解一下... 虽然 MACOS 的个性化定制选项已经「缩水」,不如早期版本那么丰富,www.chinasem.cn但我们仍然可以按照自己的喜好来更换

Ubuntu 怎么启用 Universe 和 Multiverse 软件源?

《Ubuntu怎么启用Universe和Multiverse软件源?》在Ubuntu中,软件源是用于获取和安装软件的服务器,通过设置和管理软件源,您可以确保系统能够从可靠的来源获取最新的软件... Ubuntu 是一款广受认可且声誉良好的开源操作系统,允许用户通过其庞大的软件包来定制和增强计算体验。这些软件

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

W外链微信推广短连接怎么做?

制作微信推广链接的难点分析 一、内容创作难度 制作微信推广链接时,首先需要创作有吸引力的内容。这不仅要求内容本身有趣、有价值,还要能够激起人们的分享欲望。对于许多企业和个人来说,尤其是那些缺乏创意和写作能力的人来说,这是制作微信推广链接的一大难点。 二、精准定位难度 微信用户群体庞大,不同用户的需求和兴趣各异。因此,制作推广链接时需要精准定位目标受众,以便更有效地吸引他们点击并分享链接

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C