python金融数据分析案例_【邢不行|量化小讲堂系列01-Python量化入门】如何快速上手使用Python进行金融数据分析...

本文主要是介绍python金融数据分析案例_【邢不行|量化小讲堂系列01-Python量化入门】如何快速上手使用Python进行金融数据分析...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言:

邢不行的系列帖子“量化小讲堂”,通过实际案例教初学者使用python进行量化投资,了解行业研究方向,希望能对大家有帮助。

个人微信:xingbuxing0807,有问题欢迎交流。

如何快速上手使用Python进行金融数据分析

根据之前几篇系列帖子以及微中的反馈,让我觉的很有必要写一篇如何快速上手使用Pyhton进行系列分析的帖子。本文主要以此为主题,介绍下我学习量化投资、Python的个人经验。

第一步:好奇心

不要为了学习而去学习一门编程语言,或者任何工具。一定要心里首先有一个问题,抱着解决问题的心态,去了解并学习这个工具是如何解决问题的。驱动你去学习量化投资的,应该是你的好奇心。你认为你有一个炒股独家的窍门,你认为你发现了某个规律,你非常好奇的想用历史数据去验证你的想法。比如我在大二的时候接触量化投资,就是因为我的好奇心。当时我看到一些入门的技术分析书上推荐KDJ这个技术指标,说KDJ低位金叉之后股票会涨,是个很好的买入信号,并且书上会配一些图,证明这个指标的有效性。我当时就很好奇,书上说的是不是真的?这几个配图是刻意挑选的还是有代表性的?是不是可以写个程序找出历史上所有的kdj金叉,看看之后涨的概率有多大?

这就是引领我入门的最初的好奇心。当时我不会编程,一开始用excel来试着验证,发现KDJ从大概率上来讲是不行的。好奇心继续升级:我调整一下KDJ默认的参数,效果会不会好一点?再配合一下其他的指标,效果会不会好一点?再加上点财务数据,效果会不会好一点......

慢慢的想测试的想法越来越多,excel渐渐的不够用,开始学习编程。我学习编程的目的性很强,就是解决我眼前的问题。对于解决我问题没有帮助的,我就先不学。一开始用的是SAS,自己找书看,论坛上发帖子问。后来觉得SAS太重,不灵活,慢慢的迁移到Python。

我是金融专业的,但是学校并不教量化投资,一切都是自己学。可想而知,若没有好奇心一直引导我去探索,这么长的一段时间我怎么可能坚持下来呢?

第二步:为什么Python

我推荐刚入门的量化投资研究者使用Python。主要理由如下:

1.适用性

Python配合各类第三方的package(例如下面要降到的pandas),是非常适合用来处理金融数据的

2.简单

相比于c,c#等语言,Python容易太多了。让你可以更快,更方便的对自己的想法进行测试。life is short, use Python。

3.全能

Matlab是另外一个金融分析领域的统治级语言,以上讲的两点适用性、简单性matlab都是具备的,在业界的使用范围应该是比Python要高的。

而Python相比于matlab的一大优势,那就是全能。matlab基本只能用于金融数据分析。但是Python除了拥有不亚于matlab的矩阵计算、科学计算能力之外,其他几乎任何事情都可以做。比如数据的清理、整理,比如从网页上抓取数据,比如进行文本信息的挖掘,比如做一个网站......现在学习一门语言,将来在任何地方都能用到。

第三步:如何入门Python

如果你有其他语言的编写经验(比如上过一个学期的编程课),有一定的编程基础。以下三步可以让你入门Python:

1.随便找一本Pyhton入门书。这些教程网上有很多很多,论坛里面也有很多,随便搜索一下就是。

2.挑一本Python入门书,不要花超过半天的时间,快速翻阅这本书。这个步骤不求记住什么东西,只要大概的知道这本书讲了什么,什么知识在这本书的哪一章写了就行,以便将来查阅。

3.结合自己的好奇心,给自己寻找一个问题,简单的复杂的都可以,找一点数据,直接开始实战。遇到问题,第一步是去翻书,第二步是去google(别去百度),第三步是论坛发帖求助。若你没有什么思路或者问题,可以加我微信问,我可以给你提供思路。

如果你没有任何编程的基础,那么想要入门Python,也是以上三个步骤。但是第2步,就不是仅仅花半天的时间浏览书了,而是要细细的看书。对着书上的例子,实际的操作下,大概花一个星期的时间的业余时间也就够了吧。

第四步:如何入门pandas

使用Python做金融数据分析,一定要用pandas。pandas是Python的一个第三方库,简直是金融数据分析的神器,第一次遇到它的时候让我泪流满面。了解pandas最好的途径就是他的官方文档:http://pandas.pydata.org/pandas-docs/stable/10min.html,当然也可以看我之前写的系列文章。

对本文研究有自己的想法的朋友,欢迎在评论区留言。关于文中的代码、数据,以及下期《量化小讲堂》想了解的内容,也可以加我个人微信xingbuxing0807交流。046e7ed80ef582c763267926abaca5c6f67351b4.jpg

如果你想入门量化,但是始终找不到方向,可以加入我的知识星球。我会在里面解答你的问题,分享我的感悟,不论是投资、技术,还是职业选择、思维方式。

-- 学习和成长从来都不是一个人的事 --400cdafb32a3992160feb48c08e1d5431a90bbd3.png

这篇关于python金融数据分析案例_【邢不行|量化小讲堂系列01-Python量化入门】如何快速上手使用Python进行金融数据分析...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/303911

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传