跟我学C++中级篇——Pimpl中的unique_ptr

2023-10-29 10:20

本文主要是介绍跟我学C++中级篇——Pimpl中的unique_ptr,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题
在前面的Pimpl中提出个一个问题,就是如果把裸指针换成std::shared_ptr或std::unique_ptr会怎么样?然后这里再跟进一个问题,如果把std::unique_ptr变量默认置成nullptr又会怎么样?先看一下原来的例程(这里只展示部分):

#include <memory>
class PimplExample {
public:PimplExample();// ~PimplExample();//需要删除掉析构函数int GetA();int GetB(int);int GetC();private:struct Impl;Impl *pimpl_;std::unique_ptr<Impl> ptr_;// std::shared_ptr<Impl> ptr_;
};
......

结果是,如果只是换成 std::shared_ptr,没有问题,正常运行。但是如果换成std::unique_ptr,则程序会报一个错误:

error: invalid application of ‘sizeof’ to incomplete type ‘xxxClass’  static_assert(sizeof(_Tp)>0

也就是说,前向声明的老问题,必须在编译单元看到前向声明的类的完整的定义。但是为什么裸指针和std::shared_ptr没有问题呢?

二、解决
要想解决问题就得先看一下std::shared_ptr和std::unique_ptr的定义的方式,弄明白了这二者的不同,就明白了为什么裸指针也没有问题。先看一下出错的位置:

/usr/include/c++/11/bits/unique_ptr.h:361:17:   required from ‘std::unique_ptr<_Tp, _Dp>::~unique_ptr()
/usr/include/c++/11/bits/unique_ptr.h:83:23: error: invalid application of ‘sizeof’ to incomplete type

看一下相关代码:

//361行~unique_ptr() noexcept{static_assert(__is_invocable<deleter_type&, pointer>::value,"unique_ptr's deleter must be invocable with a pointer");auto& __ptr = _M_t._M_ptr();if (__ptr != nullptr)get_deleter()(std::move(__ptr));//361__ptr = pointer();}
//83行voidoperator()(_Tp* __ptr) const{static_assert(!is_void<_Tp>::value,"can't delete pointer to incomplete type");static_assert(sizeof(_Tp)>0,   //83"can't delete pointer to incomplete type");delete __ptr;}

那么为什么std::unique_ptr会调用删除器,这就得看一下二者的源码设计的不同了:

  template <typename _Tp, typename _Dp = default_delete<_Tp>>class unique_ptr{template <typename _Up>using _DeleterConstraint =typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type;__uniq_ptr_data<_Tp, _Dp> _M_t;...};template<typename _Tp>class shared_ptr : public __shared_ptr<_Tp>{template<typename... _Args>using _Constructible = typename enable_if<is_constructible<__shared_ptr<_Tp>, _Args...>::value>::type;...};

虽然二者都可以在实现的时候儿自定义删除器,但自定义的方式略有不同。这里先扯远一些,看一下自定义二者的删除器的方式:

#include <iostream>
#include <memory>void udeleter(int *p){
//to do
}
void sdeleter(int *p){
//to do
}int main() {{std::unique_ptr<int, decltype(udeleter)> puPtr(new int(1), udeleter);std::shared_ptr<int> psPtr(new int(5), sdeleter);}

可以看到二者的形式还是有区别的。也就是说,shared_ptr的删除器是可选择的,而unique_ptr是必须的,如果没有会自动生成一个。而这个自动生成的过程,就是前面出现问题的原因。所以在编译器工作的时候儿,它会去查找这个删除器是否有问题,而如果删除器内看不到完整的数据定义类型,则就会出现前面的问题。否则没有检查直接调用后面的delete __ptr程序必须崩溃。说到此处,还得再说一下,二者调用删除的内在方式也有不同,shared_ptr是判断refcount也就是引用计数器,其为0则调用删除器(然后再调用析构函数),而unique_ptr就是直接析构函数,标准规定了, NULL,nullptr是不需要调用析构的。所以在写这两个的删除器时,传入nullptr导致的结果会有所不同。这个一定要注意,有兴趣可以自己搞个例程来一下。
好,问题原因找到了,解决方法呢?很简单,有几种方法:
1、直接自己搞一个删除器
2、把unique_ptr改成shared_ptr
3、编写自己的析构函数,但不能在头文件中编写。
代码非常简单,这里就不再写了。

三、扩展
上面的代码问题前向声明中是一个小问题,但再扩展一下,如果给智能指针默认赋值为nullptr会是什么情况?好,在上面的代码试一下,会发现,没啥问题,一切正常。一切正常才会引出下面的问题。将扩展的问题展开一下,如果遇到前向声明的类再次为外部的类前向声明使用呢?或者说前向声明的类的头文件为别的类使用呢?看一下代码:

//main.cpp
#include <iostream>using namespace std;
//#include "cpimpl.h"//此处
#include "pimpla.h"
#include "testa.h"
int main() {cout << "Hello World!" << endl;return 0;
}
//========================================================
//testa.h
#include <memory>
class PimplA;
class TestA {
public:TestA();~TestA();private:std::unique_ptr<PimplA> m_pa = nullptr;
};//testa.cpp
#include "testa.h"
#include "pimpla.h"TestA::TestA() {}
TestA::~TestA() {}
//========================================================
//pimpla.hclass CPimpl;
class PimplA
{
public:PimplA();~PimplA();private:std::unique_ptr<CPimpl> m_apc = nullptr;
};//pimpla.cpp
//#include "cpimpl.h"//同main.cpp中原因一致
#include "pimpla.h"PimplA::PimplA(){}
PimplA::~PimplA() {}//=======================================================//cpimpl.h
#include <memory>
class CPimpl {
public:CPimpl();~CPimpl();
};//cpimpl.cpp
#include "cpimpl.h"CPimpl::CPimpl() {}
CPimpl::~CPimpl() {}

在上面的代码中,如果在main.cpp中注释掉相关的头文件,则会发现,如果没有给前向声明的指针赋值为nullptr,编译运行没有问题,但赋值后,如果没有头文件的包含,则直接报文章开始的不完全定义类型错误。
这里简单解释一下,如果没有赋值为nullptr,编译器把其判断成一个声明,则不再需要查看其定义;反之,则认为其已经定义,那么必须看到完整的数据类型定义。那为什么不二次包含时没有问题呢,原因也很简单,因为无论如何,开发者都会在自己cpp文件(编译单元)中包含相关头文件,否则编译不通过。这样,声明和定义对编译器就没有区别了。
引申到其它默认的函数,如拷贝构造函数和赋值函数也会有这个问题,遇到了需要想起这个产生的原因,此处就不再赘述。

四、总结
基础知识往往是解决问题的一个重要的切入点,这也是总说的“基础不牢,地动山摇”的原因。但往往单纯讲基础知识,很多人都能侃侃而谈,真到解决问题了,不知道如何下手。这就需要不断的锤炼自己的解决问题的思想了。

这篇关于跟我学C++中级篇——Pimpl中的unique_ptr的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299990

相关文章

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.