【贝叶斯回归】【第 1 部分】--pyro库应用

2023-10-29 10:12

本文主要是介绍【贝叶斯回归】【第 1 部分】--pyro库应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Bayesian Regression - Introduction (Part 1) — Pyro Tutorials 1.8.6 documentation

一、说明

        我们很熟悉线性回归的问题,然而,一些问题看似不似线性问题,但是,用贝叶斯回归却可以解决。本文使用土地平整度和国家GDP的关系数据集进行回归分析,发现线性回归无法解决的问题,从贝叶斯回归给出答案。

二、贝叶斯回归简介

        回归是机器学习中最常见和基本的监督学习任务之一。假设我们有一个数据集\mathcal{D}形式的

                \mathcal{D} = \{ (X_i, y_i) \} \qquad \text{for}\qquad i=1,2,...,N

          线性回归的目标是将函数拟合到以下形式的数据:

                y = w X + b + \epsilon

          在这里w和b是可学习的参数并且\epsilon代表观测噪声。具体来说w是一个权重矩阵,并且b是一个偏置向量。

        在本教程中,我们将首先在 PyTorch 中实现线性回归并学习参数的点估计w和b。然后我们将了解如何使用 Pyro 实现贝叶斯回归,将不确定性纳入我们的估计中。此外,我们将学习如何使用 Pyro 的实用函数进行预测并使用TorchScript.

三、教程大纲

  • 设置

    • 数据集

  • 线性回归

    • 使用 PyTorch 优化器进行训练

    • 回归拟合

  • 使用 Pyro 的 SVI 进行贝叶斯回归

    • 模型

    • 使用自动指南

    • 优化证据下限

  • 模型评估

  • 使用 TorchScript 为模型提供服务

四、基础设置

4.1 导入模块

        让我们首先导入我们需要的模块。

[1]:
%reset -s -f
[2]:
import os
from functools import partial
import torch
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as pltimport pyro
import pyro.distributions as dist# for CI testing
smoke_test = ('CI' in os.environ)
assert pyro.__version__.startswith('1.8.6')
pyro.set_rng_seed(1)# Set matplotlib settings
%matplotlib inline
plt.style.use('default')

4.2 导入数据集

        以下示例改编自[1]。我们想探讨一个国家的地形异质性(通过地形崎岖指数(数据集中的变量崎岖度)衡量)与其人均 GDP 之间的关系。特别是,[2] 中的作者指出,地形崎岖或恶劣的地理位置与非洲以外地区较差的经济表现有关,但崎岖的地形对非洲国家的收入产生了相反的影响。让我们看一下数据并研究这种关系。我们将重点关注数据集中的三个特征:

  •         rugged:量化地形坚固性指数
  •         cont_africa:指定国家是否在非洲
  •         rgdppc_2000:2000年实际人均GDP

        响应变量 GDP 高度偏态,因此我们将对它进行对数变换。

[3]:
DATA_URL = "https://d2hg8soec8ck9v.cloudfront.net/datasets/rugged_data.csv"
data = pd.read_csv(DATA_URL, encoding="ISO-8859-1")
df = data[["cont_africa", "rugged", "rgdppc_2000"]]
df = df[np.isfinite(df.rgdppc_2000)]
df["rgdppc_2000"] = np.log(df["rgdppc_2000"])

[4]:

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 6), sharey=True)
african_nations = df[df["cont_africa"] == 1]
non_african_nations = df[df["cont_africa"] == 0]
sns.scatterplot(x=non_african_nations["rugged"],y=non_african_nations["rgdppc_2000"], ax=ax[0])
ax[0].set(xlabel="Terrain Ruggedness Index",ylabel="log GDP (2000)",   title="Non African Nations")
sns.scatterplot(x=african_nations["rugged"],y=african_nations["rgdppc_2000"],  ax=ax[1])
ax[1].set(xlabel="Terrain Ruggedness Index", ylabel="log GDP (2000)",  title="African Nations");

_images/bayesian_regression_6_0.png

4.3 线性回归

        我们希望根据数据集中的两个特征来预测一个国家的人均 GDP 对数 - 该国家是否位于非洲及其地形崎岖指数。我们将创建一个简单的类,称为PyroModule和PyroModule[nn.Linear]的子类。与 PyTorch 非常相似,但还支持Pyro 原语作为可以由 Pyro效果处理程序修改的属性(请参阅下一节,了解如何拥有作为原语的模块属性)。一些一般注意事项:torch.nn.LinearPyroModulenn.Modulepyro.sample

  • PyTorch 模块中的可学习参数是 的实例nn.Parameter,在本例中是该类的weightbias参数nn.Linear。当在 a 中声明PyroModule为属性时,它们会自动注册到 Pyro 的参数存储中。虽然该模型不需要我们在优化过程中约束这些参数的值,但这也可以通过PyroModule使用 PyroParam语句轻松实现。

  • 请注意,虽然 的forward方法PyroModule[nn.Linear]继承自nn.Linear,但它也可以很容易地被重写。例如,在逻辑回归的情况下,我们对线性预测器应用 sigmoid 变换。

[5]:
from torch import nn
from pyro.nn import PyroModuleassert issubclass(PyroModule[nn.Linear], nn.Linear)
assert issubclass(PyroModule[nn.Linear], PyroModule)

4.3.1 使用 PyTorch 优化器进行训练

        请注意,除了rugged和两个特征cont_africa之外,我们还在模型中包含了一个交互项,它使我们能够分别模拟坚固性对非洲境内和境外国家 GDP 的影响。

        我们使用均方误差(MSE)作为损失,使用 Adam 作为模块的优化器torch.optim。我们想要优化模型的参数,即网络的weightbias参数,它们对应于我们的回归系数和截距。

[6]:
# Dataset: Add a feature to capture the interaction between "cont_africa" and "rugged"
df["cont_africa_x_rugged"] = df["cont_africa"] * df["rugged"]
data = torch.tensor(df[["cont_africa", "rugged", "cont_africa_x_rugged", "rgdppc_2000"]].values,dtype=torch.float)
x_data, y_data = data[:, :-1], data[:, -1]# Regression model
linear_reg_model = PyroModule[nn.Linear](3, 1)# Define loss and optimize
loss_fn = torch.nn.MSELoss(reduction='sum')
optim = torch.optim.Adam(linear_reg_model.parameters(), lr=0.05)
num_iterations = 1500 if not smoke_test else 2def train():# run the model forward on the datay_pred = linear_reg_model(x_data).squeeze(-1)# calculate the mse lossloss = loss_fn(y_pred, y_data)# initialize gradients to zerooptim.zero_grad()# backpropagateloss.backward()# take a gradient stepoptim.step()return lossfor j in range(num_iterations):loss = train()if (j + 1) % 50 == 0:print("[iteration %04d] loss: %.4f" % (j + 1, loss.item()))# Inspect learned parameters
print("Learned parameters:")
for name, param in linear_reg_model.named_parameters():print(name, param.data.numpy())
[迭代0050]损失:3179.7852
[迭代0100]损失:1616.1371
[迭代0150]损失:1109.4117
[迭代0200]损失:833.7545
[迭代0250]损失:637.5822
[迭代0300]损失:488.2652
[迭代0350]损失:376.4650
[迭代0400]损失:296.0483
[迭代0450]损失:240.6140
[迭代0500]损失:203.9386
[迭代0550]损失:180.6171
[迭代0600]损失:166.3493
[迭代0650]损失:157.9457
[迭代0700]损失:153.1786
[迭代0750]损失:150.5735
[迭代0800]损失:149.2020
[迭代0850]损失:148.5065
[迭代0900]损失:148.1668
[迭代0950]损失:148.0070
[迭代1000]损失:147.9347
[迭代1050]损失:147.9032
[迭代1100]损失:147.8900
[迭代1150]损失:147.8847
[迭代1200]损失:147.8827
[迭代1250]损失:147.8819
[迭代1300]损失:147.8817
[迭代1350]损失:147.8816
[迭代1400]损失:147.8815
[迭代1450]损失:147.8815
[迭代1500]损失:147.8815
学习到的参数:
重量 [[-1.9478593 -0.20278624 0.39330274]]
偏见[9.22308]

4.3.2 绘制回归拟合图

        让我们分别针对非洲以外和非洲内部的国家绘制适合我们模型的回归。

[7]:
fit = df.copy()
fit["mean"] = linear_reg_model(x_data).detach().cpu().numpy()fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 6), sharey=True)
african_nations = fit[fit["cont_africa"] == 1]
non_african_nations = fit[fit["cont_africa"] == 0]
fig.suptitle("Regression Fit", fontsize=16)
ax[0].plot(non_african_nations["rugged"], non_african_nations["rgdppc_2000"], "o")
ax[0].plot(non_african_nations["rugged"], non_african_nations["mean"], linewidth=2)
ax[0].set(xlabel="Terrain Ruggedness Index",ylabel="log GDP (2000)",title="Non African Nations")
ax[1].plot(african_nations["rugged"], african_nations["rgdppc_2000"], "o")
ax[1].plot(african_nations["rugged"], african_nations["mean"], linewidth=2)
ax[1].set(xlabel="Terrain Ruggedness Index",ylabel="log GDP (2000)",title="African Nations");

_images/bayesian_regression_12_0.png

        我们注意到,地形崎岖程度与非非洲国家的 GDP 呈反比关系,但对非洲国家的 GDP 却有正向影响。然而,目前尚不清楚这种趋势有多强劲。特别是,我们想了解回归拟合如何因参数不确定性而变化。为了解决这个问题,我们将构建一个简单的线性回归贝叶斯模型。贝叶斯建模为推理模型不确定性提供了一个系统框架。我们不仅要学习点估计,还要学习与观察到的数据一致的参数分布。

4.4 使用 Pyro 随机变分推理 (SVI) 的贝叶斯回归

4.4.1 模型

        为了使我们的线性回归贝叶斯模型成立,我们需要对参数进行先验�和�。这些分布代表了我们对合理值的先前信念�和�(在观察任何数据之前)。

  PyroModule与之前一样,为线性回归创建贝叶斯模型非常直观。请注意以下事项:

  • BayesianRegression模块内部使用相同的PyroModule[nn.Linear]模块。但请注意,我们用语句替换了该模块的theweight和 the 。这些语句允许我们对和参数进行先验,而不是将它们视为固定的可学习参数。对于偏差分量,我们设置了一个相当宽的先验,因为它可能远高于 0。biasPyroSampleweightbias

  • BayesianRegression.forward方法指定了生成过程。我们通过调用该模块来生成响应的平均值linear(如您所见,该模块从先前的参数中采样weightbias返回平均响应的值)。最后,我们使用该语句obs的参数来以学习到的观察噪声pyro.sample来调节观察到的数据。该模型返回变量 给出的回归线 。y_datasigmamean

[8]:
from pyro.nn import PyroSampleclass BayesianRegression(PyroModule):def __init__(self, in_features, out_features):super().__init__()self.linear = PyroModule[nn.Linear](in_features, out_features)self.linear.weight = PyroSample(dist.Normal(0., 1.).expand([out_features, in_features]).to_event(2))self.linear.bias = PyroSample(dist.Normal(0., 10.).expand([out_features]).to_event(1))def forward(self, x, y=None):sigma = pyro.sample("sigma", dist.Uniform(0., 10.))mean = self.linear(x).squeeze(-1)with pyro.plate("data", x.shape[0]):obs = pyro.sample("obs", dist.Normal(mean, sigma), obs=y)return mean

4.4.2 使用自动指南

        为了进行推理,即学习未观察到的参数的后验分布,我们将使用随机变分推理(SVI)。该指南确定一个分布族,SVI旨在从该族中找到与真实后验具有最低 KL 散度的近似后验分布。

        用户可以在 Pyro 中编写任意灵活的自定义指南,但在本教程中,我们将仅限于 Pyro 的自动指南库。在下一个教程中,我们将探索如何手动编写指南。

        首先,我们将使用指南,将AutoDiagonalNormal模型中未观察到的参数的分布建模为具有对角协方差的高斯分布,即假设潜在变量之间不存在相关性(这是一个很强的建模假设,我们将在第 5 部分中看到)二)。在底层,这定义了一个guide使用具有与模型中的Normal每个语句相对应的可学习参数的分布的分布。sample例如,在我们的例子中,该分布的大小应对应(5,)于每个项的 3 个回归系数,并且截距项和sigma模型中各有 1 个分量。

Autoguide 还支持学习 MAP 估计AutoDelta或编写指南AutoGuideList(有关更多信息,请参阅文档)。

[9]:
from pyro.infer.autoguide import AutoDiagonalNormalmodel = BayesianRegression(3, 1)
guide = AutoDiagonalNormal(model)

4.4.3 优化证据下限

        我们将使用随机变分推理(SVI)(有关 SVI 的介绍,请参阅SVI 第 I 部分)进行推理。就像在非贝叶斯线性回归模型中一样,训练循环的每次迭代都将采取梯度步骤,不同之处在于,在本例中,我们将使用证据下界 (ELBO) 目标,而不是通过构建 MSE 损失Trace_ELBO我们传递给 的对象SVI

[10]:
from pyro.infer import SVI, Trace_ELBOadam = pyro.optim.Adam({"lr": 0.03})
svi = SVI(model, guide, adam, loss=Trace_ELBO())

        请注意,我们使用AdamPyrooptim模块中的优化器,而不是torch.optim之前的模块。这Adam是一个薄薄的包装torch.optim.Adam(请参阅此处进行讨论)。中的优化器pyro.optim用于优化和更新 Pyro 参数存储中的参数值。特别是,您会注意到我们不需要将可学习的参数传递给优化器,因为这是由指导代码确定的,并且在类的幕后SVI自动发生。要采取 ELBO 梯度步骤,我们只需调用 SVI 的步骤方法。我们传递给的 data 参数SVI.step将同时传递给model()guide()。完整的训练循环如下:

[11]:
pyro.clear_param_store()
for j in range(num_iterations):# calculate the loss and take a gradient steploss = svi.step(x_data, y_data)if j % 100 == 0:print("[iteration %04d] loss: %.4f" % (j + 1, loss / len(data)))
[迭代0001]损失:6.2310
[迭代0101]损失:3.5253
[迭代0201]损失:3.2347
[迭代0301]损失:3.0890
[迭代0401]损失:2.6377
[迭代0501]损失:2.0626
[迭代0601]损失:1.4852
[迭代0701]损失:1.4631
[迭代0801]损失:1.4632
[迭代0901]损失:1.4592
[迭代1001]损失:1.4940
[迭代1101]损失:1.4988
[迭代1201]损失:1.4938
[迭代1301]损失:1.4679
[迭代1401]损失:1.4581

        我们可以通过从 Pyro 的参数存储中获取来检查优化的参数值。

[12]:
guide.requires_grad_(False)for name, value in pyro.get_param_store().items():print(name, pyro.param(name))
AutoDiagonalNormal.loc 参数包含:
张量([-2.2371, -1.8097, -0.1691, 0.3791, 9.1823])
AutoDiagonalNormal.scale 张量([0.0551, 0.1142, 0.0387, 0.0769, 0.0702])

  AutoDiagonalNormal.scale正如您所看到的,我们现在对学习参数进行了不确定性估计 ( ),而不仅仅是点估计。请注意,Autoguide 将潜在变量打包到单个张量中,在本例中,模型中采样的每个变量都有一个条目。正如我们之前所说,locscale参数都有 size (5,),一个对应模型中的每个潜在变量。

        为了更清楚地查看潜在参数的分布,我们可以使用AutoDiagonalNormal.quantiles从自动引导中解压潜在样本的方法,并自动将它们约束到站点的支持(例如变量sigma必须位于)。我们看到参数的中值非常接近我们从第一个模型获得的最大似然点估计。(0, 10)

[13]:
guide.quantiles([0.25, 0.5, 0.75])
[13]:
{'西格玛':[张量(0.9328),张量(0.9647),张量(0.9976)],'线性.权重': [张量([[-1.8868,-0.1952,0.3272]]),张量([[-1.8097,-0.1691,0.3791]]),张量([[-1.7327,-0.1429,0.4309]])],'线性.偏差':[张量([9.1350]),张量([9.1823]),张量([9.2297])]}

4.5 模型评估

        为了评估我们的模型,我们将生成一些预测样本并查看后验。为此,我们将使用Predictive实用程序类。

  • 我们从经过训练的模型中生成 800 个样本。在内部,这是通过首先为 中未观察到的站点生成样本guide,然后通过将站点调整为从 中采样的值来向前运行模型来完成的guide。请参阅模型服务部分以深入了解该类的Predictive工作原理。

  • 请注意,在 中,我们指定了捕获回归线的模型的return_sites结果("obs"站点)和返回值( )。"_RETURN"此外,我们还想捕获回归系数(由 给出"linear.weight")以进行进一步分析。

  • 其余代码仅用于绘制模型中两个变量的 90% CI。

[14]:
from pyro.infer import Predictivedef summary(samples):site_stats = {}for k, v in samples.items():site_stats[k] = {"mean": torch.mean(v, 0),"std": torch.std(v, 0),"5%": v.kthvalue(int(len(v) * 0.05), dim=0)[0],"95%": v.kthvalue(int(len(v) * 0.95), dim=0)[0],}return site_statspredictive = Predictive(model, guide=guide, num_samples=800,return_sites=("linear.weight", "obs", "_RETURN"))
samples = predictive(x_data)
pred_summary = summary(samples)
[15]:
mu = pred_summary["_RETURN"]
y = pred_summary["obs"]
predictions = pd.DataFrame({"cont_africa": x_data[:, 0],"rugged": x_data[:, 1],"mu_mean": mu["mean"],"mu_perc_5": mu["5%"],"mu_perc_95": mu["95%"],"y_mean": y["mean"],"y_perc_5": y["5%"],"y_perc_95": y["95%"],"true_gdp": y_data,
})
[16]:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 6), sharey=True)
african_nations = predictions[predictions["cont_africa"] == 1]
non_african_nations = predictions[predictions["cont_africa"] == 0]
african_nations = african_nations.sort_values(by=["rugged"])
non_african_nations = non_african_nations.sort_values(by=["rugged"])
fig.suptitle("Regression line 90% CI", fontsize=16)
ax[0].plot(non_african_nations["rugged"],non_african_nations["mu_mean"])
ax[0].fill_between(non_african_nations["rugged"],non_african_nations["mu_perc_5"],non_african_nations["mu_perc_95"],alpha=0.5)
ax[0].plot(non_african_nations["rugged"],non_african_nations["true_gdp"],"o")
ax[0].set(xlabel="Terrain Ruggedness Index",ylabel="log GDP (2000)",title="Non African Nations")
idx = np.argsort(african_nations["rugged"])
ax[1].plot(african_nations["rugged"],african_nations["mu_mean"])
ax[1].fill_between(african_nations["rugged"],african_nations["mu_perc_5"],african_nations["mu_perc_95"],alpha=0.5)
ax[1].plot(african_nations["rugged"],african_nations["true_gdp"],"o")
ax[1].set(xlabel="Terrain Ruggedness Index",ylabel="log GDP (2000)",title="African Nations");

_images/bayesian_regression_29_0.png

        上图显示了我们对回归线估计的不确定性,以及均值附近的 90% CI。我们还可以看到,大多数数据点实际上位于 90% CI 之外,这是预料之中的,因为我们没有绘制将受到影响的结果变量sigma!接下来我们就这样做吧。

[17]:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 6), sharey=True)
fig.suptitle("Posterior predictive distribution with 90% CI", fontsize=16)
ax[0].plot(non_african_nations["rugged"],non_african_nations["y_mean"])
ax[0].fill_between(non_african_nations["rugged"],non_african_nations["y_perc_5"],non_african_nations["y_perc_95"],alpha=0.5)
ax[0].plot(non_african_nations["rugged"],non_african_nations["true_gdp"],"o")
ax[0].set(xlabel="Terrain Ruggedness Index",ylabel="log GDP (2000)",title="Non African Nations")
idx = np.argsort(african_nations["rugged"])ax[1].plot(african_nations["rugged"],african_nations["y_mean"])
ax[1].fill_between(african_nations["rugged"],african_nations["y_perc_5"],african_nations["y_perc_95"],alpha=0.5)
ax[1].plot(african_nations["rugged"],african_nations["true_gdp"],"o")
ax[1].set(xlabel="Terrain Ruggedness Index",ylabel="log GDP (2000)",title="African Nations");

_images/bayesian_regression_31_0.png

        我们观察到,我们的模型的结果和 90% CI 占我们在实践中观察到的大部分数据点。进行此类后验预测检查以查看我们的模型是否给出有效的预测通常是一个好主意。

        最后,让我们重新审视之前的问题,即地形崎岖度与 GDP 之间的关系对于模型参数估计的任何不确定性有多稳健。为此,我们绘制了考虑到非洲境内和境外国家地形崎岖程度的 GDP 对数斜率分布。如下所示,非洲国家的概率质量主要集中在正区域,其他国家反之亦然,这进一步证实了最初的假设。

[18]:
weight = samples["linear.weight"]
weight = weight.reshape(weight.shape[0], 3)
gamma_within_africa = weight[:, 1] + weight[:, 2]
gamma_outside_africa = weight[:, 1]
fig = plt.figure(figsize=(10, 6))
sns.distplot(gamma_within_africa, kde_kws={"label": "African nations"},)
sns.distplot(gamma_outside_africa, kde_kws={"label": "Non-African nations"})
fig.suptitle("Density of Slope : log(GDP) vs. Terrain Ruggedness");

_images/bayesian_regression_33_0.png

五、通过 TorchScript 进行模型服务

        最后,请注意modelguidePredictive实用程序类都是torch.nn.Module实例,并且可以序列化为TorchScript。

        在这里,我们展示了如何将 Pyro 模型作为torch.jit.ModuleScript提供服务,它可以作为 C++ 程序单独运行,而无需 Python 运行时。

        为此,我们将Predictive使用 Pyro 的效果处理库重写我们自己的简单版本的实用程序类。这使用:

  • poutinetrace用于捕获运行模型/指南代码的执行跟踪。

  • poutinereplay将模型中的位点调节为从引导轨迹中采样的值。

[19]:
from collections import defaultdict
from pyro import poutine
from pyro.poutine.util import prune_subsample_sites
import warningsclass Predict(torch.nn.Module):def __init__(self, model, guide):super().__init__()self.model = modelself.guide = guidedef forward(self, *args, **kwargs):samples = {}guide_trace = poutine.trace(self.guide).get_trace(*args, **kwargs)model_trace = poutine.trace(poutine.replay(self.model, guide_trace)).get_trace(*args, **kwargs)for site in prune_subsample_sites(model_trace).stochastic_nodes:samples[site] = model_trace.nodes[site]['value']return tuple(v for _, v in sorted(samples.items()))predict_fn = Predict(model, guide)
predict_module = torch.jit.trace_module(predict_fn, {"forward": (x_data,)}, check_trace=False)

        我们使用torch.jit.trace_module来跟踪该模块的方法,并使用torch.jit.saveforward保存它。可以使用 PyTorch 的 C++ API 加载此保存的模型,或者使用 Python API,如下所示。reg_predict.pttorch::jit::load(filename)

[20]:
torch.jit.save(predict_module, '/tmp/reg_predict.pt')
pred_loaded = torch.jit.load('/tmp/reg_predict.pt')
pred_loaded(x_data)
[20]:
(张量([9.2165]),张量([[-1.6612,-0.1498,0.4282]]),张量([ 7.5951, 8.2473, 9.3864, 9.2590, 9.0540, 9.3915, 8.6764, 9.3775,9.5473、9.6144、10.3521、8.5452、5.4008、8.4601、9.6219、9.7774、7.1958、7.2581、8.9159、9.0875、8.3730、8.7903、9.3167、8.8155、7.4433、9.9981、8.6909、9.2915、10.1376、7.7618、10.1916、7.4754、6.3473、7.7584、9.1307、6.0794、8.5641、7.8487、9.2828、9.0763、7.9250、10.9226、8.0005、10.1799、5.3611、8.1174、8.0585、8.5098、6.8656、8.6765、7.8925、9.5233、10.1269、10.2661、7.8883、8.9194、10.2866、7.0821、8.2370、8.3087、7.8408、8.4891、8.0107、7.6815、8.7497、9.3551、9.9687、10.4804、8.5176、7.1679、10.8805、7.4919、8.7088、9.2417、9.2360、9.7907、8.4934、7.8897、9.5338、9.6572、9.6604、9.9855、6.7415、8.1721、10.0646、10.0817、8.4503、9.2588、8.4489、7.7516、6.8496、9.2208、8.9852、10.6585、9.4218、9.1290、9.5631、9.7422、10.2814、7.2624、9.6727、8.9743、6.9666、9.5856、9.2518、8.4207、8.6988、9.1914、7.8161、9.8446、6.5528、8.5518、6.7168、7.0694、8.9211、8.5311、8.4545、10.8346、7.8768、9.2537、9.0776、9.4698、7.9611、9.2177、8.0880、8.5090、9.2262、8.9242、9.3966、7.5051、9.1014、8.9601、7.7225、8.7569、8.5847、8.8465、9.7494、8.8587、6.5624、6.9372、9.9806、10.1259、9.1864、7.5758、9.8258、8.6375、7.6954、8.9718、7.0985、8.6360、8.5951、8.9163、8.4661、8.4551、10.6844、7.5948、8.7568、9.5296、8.9530、7.1214、9.1401、8.4992、8.9115、10.9739、8.1593、10.1162、9.7072、7.8641、8.8606, 7.5935]),张量(0.9631))

        让我们通过从加载的模块生成样本并重新生成之前的绘图来检查我们的Predict模块是否确实正确序列化。

[21]:
weight = []
for _ in range(800):# index = 1 corresponds to "linear.weight"weight.append(pred_loaded(x_data)[1])
weight = torch.stack(weight).detach()
weight = weight.reshape(weight.shape[0], 3)
gamma_within_africa = weight[:, 1] + weight[:, 2]
gamma_outside_africa = weight[:, 1]
fig = plt.figure(figsize=(10, 6))
sns.distplot(gamma_within_africa, kde_kws={"label": "African nations"},)
sns.distplot(gamma_outside_africa, kde_kws={"label": "Non-African nations"})
fig.suptitle("Loaded TorchScript Module : log(GDP) vs. Terrain Ruggedness");

_images/bayesian_regression_39_0.png

        在下一节中,我们将了解如何编写变分推理指南,并将结果与​​通过 HMC 进行的推理进行比较。

参考资料:

  1. McElreath, D.,统计反思,第 7 章,2016 年

  2. Nunn, N. 和 Puga, D.,坚固性:非洲恶劣地理的祝福”,经济与统计评论 94(1),2012 年 2 月

这篇关于【贝叶斯回归】【第 1 部分】--pyro库应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299963

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者