python实现将图片数据以LMDB方式存储

2023-10-29 09:44

本文主要是介绍python实现将图片数据以LMDB方式存储,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以LMDB(Lightning Memory-Mapped Database)方式存储的优点

  1. 高效性:LMDB是一种内存映射数据库,可以在内存和磁盘之间实现高效的数据访问。它利用操作系统的虚拟内存机制,将数据文件映射到内存中,从而避免了频繁的磁盘IO操作,提高了数据的读取和写入效率

  2. 低内存占用:LMDB使用了页面缓存和写时复制(Copy-on-Write)的技术,可以在内存中保持数据的快速访问同时占用较少的内存空间。这对于处理大规模数据集或内存有限的环境非常有用

  3. 并发支持:LMDB支持多线程或多进程的并发读取和写入操作,可以在高并发的数据访问场景下保持数据的一致性和可靠性

  4. 数据压缩:LMDB支持数据的压缩,可以减小数据文件的大小,节省存储空间

  5. 跨平台兼容:LMDB是一个跨平台的数据库,可以在不同的操作系统上使用,并提供了多种编程语言的接口,如C、Python等

代码示例

将目标分类的数据存储成“.lmdb”文件,

import pickle, lmdb
from tqdm import tqdmimg_paths = []
images, labels = [], []
for img_path in img_paths:images.append(img_path)labels.append(1)  ## 假设数据的label为1combined = list(zip(images, labels))
random.shuffle(combined)
images, labels = zip(*combined)
images = list(images)
labels = list(labels)def create_lmdb(images, labels, lmdb_path):assert len(images) == len(labels), "All lists must have the same length"db = lmdb.open(lmdb_path, map_size=int(1e12))with db.begin(write=True) as txn:bar = tqdm(images)for i, img_path in enumerate(bar):with open(img_path, 'rb') as f:img_data = f.read()meta_data = {'label': labels[i], 'size': len(img_data)}data = pickle.dumps((meta_data, img_data))txn.put(str(i).encode('utf-8'), data)txn.put('length'.encode('utf-8'), str(len(img_paths)).encode('utf-8'))print(f"Created LMDB dataset at {lmdb_path} with {len(img_paths)} images")create_lmdb(images=images, labels=labels, lmdb_path="xxx.lmdb")

这篇关于python实现将图片数据以LMDB方式存储的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299822

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传