CNN进化史

2023-10-29 08:30
文章标签 cnn 进化史

本文主要是介绍CNN进化史,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

205257_PNCo_876354.png

卷积神经网络(CNN)近年来取得了长足的发展,是深度学习中的一颗耀眼明珠。CNN不仅能用来对图像进行分类,还在图像分割(目标检测)任务中有着广泛的应用。CNN已经成为了图像分类的黄金标准,一直在不断的发展和改进。
刘昕博士总结了CNN的演化历史,如下图所示:
205306_hASF_876354.png 
CNN的起点是神经认知机模型,此时已经出现了卷积结构,经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等模型盖过。随着ReLU、dropout的提出,以及GPU和大数据带来的历史机遇,CNN在2012年迎来了历史突破:AlexNet。随后几年,CNN呈现爆发式发展,各种CNN模型涌现出来。
205314_Bhel_876354.png 
CNN的主要演进方向如下:
1、网络结构加深
2、加强卷积功能
3、从分类到检测
4、新增功能模块

下图是CNN几个经典模型(AlexNet、VGG、NIN、GoogLeNet、ResNet)的对比图,可见网络层次越来越深、结构越来越复杂,当然模型效果也是越来越好:
205323_W5wl_876354.png 
本博客通过一系列的“大话深度学习”文章,全面详细地介绍了CNN进化史各个阶段的里程碑成果。

1、小白讲卷积:大话卷积神经网络(CNN)
205411_Qtqp_876354.png 

2、卷积初尝试:大话CNN经典模型 LeNet
205419_iPF6_876354.png 
3、历史の突破:大话CNN经典模型 AlexNet
205425_0Kdc_876354.png 

4、网络再加深:大话CNN经典模型VGGNet
205432_anON_876354.png
 
5、增强卷积功能:大话CNN经典模型GoogLeNet
205438_npXl_876354.png
 
6、从分类到目标检测:大话目标检测模型(R-CNN、Fast R-CNN、Faster R-CNN)
205445_OBiN_876354.png
 
7、网络深度创历史:大话深度残差网络(ResNet)

205455_6sQz_876354.png

要真正深入了解学习这些CNN经典模型,最好的办法是仔细阅读相应的论文。欢迎关注公众号“大数据与人工智能Lab”(BigdataAILab),里面收集整理了CNN各种模型的经典论文
205502_aGfn_876354.png

关注本人公众号“大数据与人工智能Lab”(BigdataAILab),然后回复“论文”关键字可在线阅读经典论文的内容

转载于:https://my.oschina.net/u/876354/blog/1797489

这篇关于CNN进化史的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299486

相关文章

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

【tensorflow CNN】构建cnn网络,识别mnist手写数字识别

#coding:utf8"""构建cnn网络,识别mnistinput conv1 padding max_pool([2,2],strides=[2,2]) conv2 x[-1,28,28,1] 卷积 [5,5,1,32] -> [-1,24,24,32]->[-1,28,

震惊,从仿真走向现实,3D Map最大提升超12,Cube R-CNN使用合成数据集迁移到真实数据集

震惊,从仿真走向现实,3D Map最大提升超12,Cube R-CNN使用合成数据集迁移到真实数据集 Abstract 由于摄像机视角多变和场景条件不可预测,在动态路边场景中从单目图像中准确检测三维物体仍然是一个具有挑战性的问题。本文介绍了一种两阶段的训练策略来应对这些挑战。我们的方法首先在大规模合成数据集RoadSense3D上训练模型,该数据集提供了多样化的场景以实现稳健的特征学习。随后,

Segmentation简记-Multi-stream CNN based Video Semantic Segmentation for Automated Driving

创新点 1.RFCN & MSFCN 总结 网络结构如图所示。输入视频得到图像分割结果。 简单粗暴

CNN-LSTM用于时间序列预测,发二区5分+没问题!

为了进一步提高时序预测的性能,研究者们组合了CNN和LSTM的特点,提出了CNN-LSTM混合架构。 这种架构因为独特的结构设计,能同时处理时空数据、提取丰富的特征、并有效解决过拟合问题,实现对时间序列数据的高效、准确预测,远超传统方法。 因此,它已经成为我们应对时序预测任务离不开的模型,有关CNN-LSTM的研究也成了当下热门主题之一,高质量论文频发。 为了方便大家了解CNN-LSTM的最

40从传统算法到深度学习:目标检测入门实战 --深度学习在目标检测中的应用:R-CNN

参考视频教程:    **深度学习之目标检测常用算法原理+实践精讲  ** R-CNN 在传统的目标检测方法中,我们使用滑动窗口标记目标的位置、使用人工设计的特征和机器学习算法进行分类,此类方法虽然可以基本达到实时性的要求但是其缺点也比较明显。首先滑动窗口采用穷举的策略来找到目标,这种方法的缺陷是如果步长和窗口尺寸设置太小会导致时间复杂度过高,在检测过程中会出现过多的冗余窗口,如果窗口

字符编码进化史

很久很久以前,有一群人,他们决定用8个可以开合的晶体管来组合成不同的状态,以表示世界上的万物。他们看到8个开关状态是好的,于是他们把这称为”字节“。再后来,他们又做了一些可以处理这些字节的机器,机器开动了,可以用字节来组合出很多状态,状态开始变来变去。他们看到这样是好的,于是它们就这机器称为”计算机“。 开始计算机只在美国用。八位的字节一共可以组合出256(2的8次方)种不同的状态。 他们

【Python机器学习】卷积神经网络(CNN)——语义理解

无论是人类还是机器,理解隐藏在文字背后的意图,对于倾听者或阅读者来说的,都是一项重要的技能。除了理解单个词的含义,词之间还有各种各样巧妙的组合方式。 词的性质和奥妙与词之间的关系密切相关。这种关系至少有两种表达方式: 词序词的临近度 这些关系的模式以及词本身存在的模式可以从两个方面来表示:空间和时间。两者的区别主要是:对于前者,要像在书页上的句子那样来处理——在文字的位置上寻找关系;对于后者