POJ 3241 Object Clustering 曼哈顿最小生成树

2023-10-29 00:40

本文主要是介绍POJ 3241 Object Clustering 曼哈顿最小生成树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Object Clustering

Description

We have (N ≤ 10000) objects, and wish to classify them into several groups by judgement of their resemblance. To simply the model, each object has 2 indexes a and b (ab ≤ 500). The resemblance of object i and object j is defined by dij = |a- aj| + |b- bj|, and then we say i is dij resemble to j. Now we want to find the minimum value of X, so that we can classify the N objects into K (< N) groups, and in each group, one object is at most X resemble to another object in the same group, i.e, for every object i, if i is not the only member of the group, then there exists one object j (i ≠ j) in the same group that satisfies dij ≤ X

Input

The first line contains two integers N and K. The following N lines each contain two integers a and b, which describe a object.

Output

A single line contains the minimum X.

Sample Input

6 2
1 2
2 3
2 2
3 4
4 3
3 1

Sample Output

2

 

整个题:就是求manhattan最小生成树

曼哈顿距离最小生成树问题可以简述如下:

给定二维平面上的N个点,在两点之间连边的代价为其曼哈顿距离,求使所有点连通的最小代价。

朴素的算法可以用O(N2)的Prim,或者处理出所有边做Kruskal,但在这里总边数有O(N2)条,所以Kruskal的复杂度变成了O(N2logN)。

但是事实上,真正有用的边远没有O(N2)条。我们考虑每个点会和其他一些什么样的点连边。可以得出这样一个结论,以一个点为原点建立直角坐标系,在每45度内只会向距离该点最近的一个点连边。

这个结论可以证明如下:假设我们以点A为原点建系,考虑在y轴向右45度区域内的任意两点B(x1,y1)和C(x2,y2),不妨设|AB|≤|AC|(这里的距离为曼哈顿距离),如下图:

 

|AB|=x1+y1,|AC|=x2+y2,|BC|=|x1-x2|+|y1-y2|。而由于B和C都在y轴向右45度的区域内,有y-x>0且x>0。下面我们分情况讨论:

1.      x1>x2且y1>y2。这与|AB|≤|AC|矛盾;

2.      x1≤x2且y1>y2。此时|BC|=x2-x1+y1-y2,|AC|-|BC|=x2+y2-x2+x1-y1+y2=x1-y1+2*y2。由前面各种关系可得y1>y2>x2>x1。假设|AC|<|BC|即y1>2*y2+x1,那么|AB|=x1+y1>2*x1+2*y2,|AC|=x2+y2<2*y2<|AB|与前提矛盾,故|AC|≥|BC|;

3.      x1>x2且y1≤y2。与2同理;

4.      x1≤x2且y1≤y2。此时显然有|AB|+|BC|=|AC|,即有|AC|>|BC|。

综上有|AC|≥|BC|,也即在这个区域内只需选择距离A最近的点向A连边。

这种连边方式可以保证边数是O(N)的,那么如果能高效处理出这些边,就可以用Kruskal在O(NlogN)的时间内解决问题。下面我们就考虑怎样高效处理边。

我们只需考虑在一块区域内的点,其他区域内的点可以通过坐标变换“移动”到这个区域内。为了方便处理,我们考虑在y轴向右45度的区域。在某个点A(x0,y0)的这个区域内的点B(x1,y1)满足x1≥x0且y1-x1>y0-x0。这里对于边界我们只取一边,但是操作中两边都取也无所谓。那么|AB|=y1-y0+x1-x0=(x1+y1)-(x0+y0)。在A的区域内距离A最近的点也即满足条件的点中x+y最小的点。因此我们可以将所有点按x坐标排序,再按y-x离散,用线段树或者树状数组维护大于当前点的y-x的最小的x+y对应的点。时间复杂度O(NlogN)。

至于坐标变换,一个比较好处理的方法是第一次直接做;第二次沿直线y=x翻转,即交换x和y坐标;第三次沿直线x=0翻转,即将x坐标取相反数;第四次再沿直线y=x翻转。注意只需要做4次,因为边是双向的。

至此,整个问题就可以在O(NlogN)的复杂度内解决了。

  

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include<vector>
#include <algorithm>
using namespace std;
const int N = 1e4+20, M = 4e4+10, mod = 1e9+7, inf = 0x3f3f3f3f;
typedef long long ll;struct ss{int u,v,w;bool operator < (const ss &b) const{return w < b.w;}
}e[N * 4];
int tot = 0 ,id[N] , mi[N] , pos[N] , x[N], cnt ,  y[N], san[N], fa[N], n ,k;
bool cmp(int i,int j)
{if(x[i] != x[j]) return x[i] < x[j];else return y[i] < y[j];
}
void add(int u,int v,int w) {++tot;e[tot].u = u, e[tot].v = v, e[tot].w = w;
}
int query(int x) {int ret = -1, ans = inf;for(int i = x; i <= cnt; i += i&(-i)) {if(mi[i] < ans) ans = mi[i] , ret = pos[i];}return ret;
} 
void update(int x, int c, int p) {for(int i = x; i >= 1; i -= i&(-i)) if(mi[i] > c) mi[i] = c, pos[i] = p;
}int haxi(int x) {return lower_bound(san + 1, san + cnt + 1, x) - san;}
int dis(int i,int j)
{return abs(x[i] - x[j]) + abs(y[i] - y[j]);
}
void Manst() {tot = 0;for(int dir = 0; dir < 4; ++dir) {if(dir == 1 || dir == 3)for(int i = 1; i <= n; ++i) swap(x[i],y[i]);elsefor(int i = 1; i <= n; ++i) x[i] = -x[i];for(int i = 1; i <= n; ++i) id[i] = i;sort(id + 1, id + n + 1, cmp);cnt = 0;for(int i = 1; i <= n; ++i) san[++cnt] = y[i] - x[i];sort(san + 1, san + cnt + 1);cnt = unique(san + 1, san + cnt + 1) - san - 1;for(int i = 1; i <= n; ++i) mi[i] = inf , pos[i] = -1;for(int i = n; i >= 1; --i) {int u = haxi(y[id[i]] - x[id[i]]);int v = query(u);if(v != -1) add(id[i], v, dis(id[i], v));update(u, x[id[i]] + y[id[i]], id[i]);}}
}int finds(int x) {return x==fa[x]?x:fa[x]=finds(fa[x]);}int main()
{while(~scanf("%d%d",&n,&k)) {for(int i=1;i<=n;i++) scanf("%d%d",&x[i],&y[i]);Manst();sort(e + 1, e+ tot + 1);for(int i = 1; i <= n; ++i) fa[i] = i;k = n - k;for(int i = 1; i <= tot; ++i){   int u = e[i].u, v = e[i].v, c = e[i].w;if(finds(u) != finds(v)) {--k;fa[finds(u)] = finds(v);if(k ==  0) {printf("%d\n",c);break;}}}}
}

 

转载于:https://www.cnblogs.com/zxhl/p/5707999.html

这篇关于POJ 3241 Object Clustering 曼哈顿最小生成树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/297072

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景

Django HTTPResponse响应体中返回openpyxl生成的文件过程

《DjangoHTTPResponse响应体中返回openpyxl生成的文件过程》Django返回文件流时需通过Content-Disposition头指定编码后的文件名,使用openpyxl的sa... 目录Django返回文件流时使用指定文件名Django HTTPResponse响应体中返回openp

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法