城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研

本文主要是介绍城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 城市群/城际OD定义
    • 2 理论模型与分析方法
      • 2.1 重力模型 Gravity Model
      • 2.2 干预机会模型 Intervening Opportunities Model
      • 2.3 辐射模型 Radiation Model
    • 3 Issues related to OD flows
      • 3.1 OD Prediction
      • 3.2 OD Forecasting
      • 3.3 OD Construction
      • 3.4 OD Estimation
    • 4 OD Data
      • 4.1 Basic Infor About OD Data
      • 4.2 Open Access Dataset
    • Reference

1 城市群/城际OD定义

  • Origin-Destination用于表示空间移动(from the origin to the destination),有时也被称为流数据(flow data)[1]
    • (Origin, Destination, Number, Mode, …)
    • Origin以及Destination表示方法:
        1. Zone ID,例如‘zone1’
        1. 坐标coordinate
    • Number: 该OD对的出行数量
    • Mode: 出行模式
      • 通常只包含1种交通方式,例如bus, train
      • 对于多交通模式出行,例如cycle-train-bus一般也只表示为一种模式,例如train
    • 一般不包含详细的路径数据(routing)
      • 可以选择routing服务基于OD来生产routing数据
      • 例如OSRM(shortest path), Google Directions API, CycleStreets.net or OpenRouteService
      • OSRM

2 理论模型与分析方法

2.1 重力模型 Gravity Model

2.2 干预机会模型 Intervening Opportunities Model

2.3 辐射模型 Radiation Model

3 Issues related to OD flows

3.1 OD Prediction

  • 问题定义与解析
    • 定义: OD prediction
    • 解析:
      • 数据基础:城市的区域(region)特征数据、区域间的OD对数据
      • 方案:基于特征数据以及OD对数据构建OD预测模型
        • 输入:region的属性特征
        • 输出:region间OD数量
      • 用途:基于部分已有数据,构建出区域属性与OD pair之间的推导模型,能够实现由已知到未知的预测
      • 缺陷:数据要求严格(属性数据的充分与否一定程度上决定了模型的泛化能力)

3.2 OD Forecasting

  • 问题定义与解析
    • 定义OD Forecasting
    • 解析:
      • 数据基础:过去一段时间内的OD情况
      • 方案:时序模型构建
        • 输入:过去的OD
        • 输出:未来的OD
      • 用途:由历史数据推测未来数据
      • 缺陷:
          1. 粒度不确定:point-level; matrix-level(city-level); 可以想见的是,预测范围越广,模型越为复杂
          1. OD数据需要具备时间属性
      • 优势:可以在没有任何其他辅助数据的情况下进行OD预测

3.3 OD Construction

  • 问题定义与解析
    • 定义:OD construction
    • 解析:
      • 数据基础:易获取的信息
      • 方案:基于前期获取的信息构建出完整的城市OD Matrix
      • 优势
          1. 无需任何前置OD数据

3.4 OD Estimation

  • 问题定义与解析
    • 定义:OD Estimation
    • 解析:
      • 数据基础:在不同地点采集(例如路段、交叉口等)的具有时间标签的交通agent数量(或其他可用数据)
      • 方案:基于观测数据推测OD流

4 OD Data

4.1 Basic Infor About OD Data

  • 用于OD研究的数据一般可以分为两类
    • 基础OD流数据
      • Survey data:问卷调查数据
      • Individual trajectories:轨迹数据
        • Call Detail Records
        • Cellular Network Access
        • GPS Records
        • Location-based Social Network Check-ins
        • trajectories data
      • Transportation records:交通系统记录数据
        • traffic surveillance video
        • smart cards
        • taxi orders
    • 包含其他辅助数据的OD数据
      • 常用于探究OD与城市属性的空间分布特性(例如用地属性)
      • Region-level socioeconomic data: demographics, land use patterns, points of interest (POIs), and infrastructure
      • Transportation observation data
        • Traffic Flow: link counts,即起点-目的地连线数
        • Vehicle Speed: 车速数据
      • Urban geographic data

4.2 Open Access Dataset

  • CITYDATA.ai[3]
    • Inner City
    • 提供开放数据集以供使用(数据量极大)
    • 提供访问API以供程序调用(需要申请开发者权限)
    • 没有inter-city OD
  • Datarade[4]
    • 可直接购买数据集(价格贵)
    • 可与运营公司联系获取数据集
  • Translink[5]
    • 澳大利亚Queensland公共交通数据 (public transportation)
    • example
  • Cencus[6]
    • 英国威尔士
    • 包含:
      • Migration data:1年范围内的人口迁移OD
      • Workplace data:工作相关OD数据
      • Second Address data:居住地之间的迁移
      • Student data:学生OD
  • 大数据平台
    • 腾讯位置服务[7]

Reference

[1] ‘The importance of OD data’. Accessed: Oct. 23, 2023. [Online]. Available: https://cran.r-project.org/web/packages/od/vignettes/od.html#:~:text=As%20the%20name%20suggests%2C%20origin,represented%20by%20a%20zone%20centroid).
[2] Rong, C., Ding, J., & Li, Y. (2023). An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques. ArXiv, abs/2306.10048.
[3] https://data.world/citydataai/spain-regions
[4] https://datarade.ai/use-cases/origin-destination-analysis
[5] https://www.data.qld.gov.au/dataset/translink-origin-destination-trips-2022-onwards
[6] https://www.nomisweb.co.uk/sources/census_2021_od
[7] https://heat.qq.com/wap_qqmap_big_data/qianxi_index.html

这篇关于城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/295833

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

JavaScript Array.from及其相关用法详解(示例演示)

《JavaScriptArray.from及其相关用法详解(示例演示)》Array.from方法是ES6引入的一个静态方法,用于从类数组对象或可迭代对象创建一个新的数组实例,本文将详细介绍Array... 目录一、Array.from 方法概述1. 方法介绍2. 示例演示二、结合实际场景的使用1. 初始化二

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.