城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研

本文主要是介绍城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 城市群/城际OD定义
    • 2 理论模型与分析方法
      • 2.1 重力模型 Gravity Model
      • 2.2 干预机会模型 Intervening Opportunities Model
      • 2.3 辐射模型 Radiation Model
    • 3 Issues related to OD flows
      • 3.1 OD Prediction
      • 3.2 OD Forecasting
      • 3.3 OD Construction
      • 3.4 OD Estimation
    • 4 OD Data
      • 4.1 Basic Infor About OD Data
      • 4.2 Open Access Dataset
    • Reference

1 城市群/城际OD定义

  • Origin-Destination用于表示空间移动(from the origin to the destination),有时也被称为流数据(flow data)[1]
    • (Origin, Destination, Number, Mode, …)
    • Origin以及Destination表示方法:
        1. Zone ID,例如‘zone1’
        1. 坐标coordinate
    • Number: 该OD对的出行数量
    • Mode: 出行模式
      • 通常只包含1种交通方式,例如bus, train
      • 对于多交通模式出行,例如cycle-train-bus一般也只表示为一种模式,例如train
    • 一般不包含详细的路径数据(routing)
      • 可以选择routing服务基于OD来生产routing数据
      • 例如OSRM(shortest path), Google Directions API, CycleStreets.net or OpenRouteService
      • OSRM

2 理论模型与分析方法

2.1 重力模型 Gravity Model

2.2 干预机会模型 Intervening Opportunities Model

2.3 辐射模型 Radiation Model

3 Issues related to OD flows

3.1 OD Prediction

  • 问题定义与解析
    • 定义: OD prediction
    • 解析:
      • 数据基础:城市的区域(region)特征数据、区域间的OD对数据
      • 方案:基于特征数据以及OD对数据构建OD预测模型
        • 输入:region的属性特征
        • 输出:region间OD数量
      • 用途:基于部分已有数据,构建出区域属性与OD pair之间的推导模型,能够实现由已知到未知的预测
      • 缺陷:数据要求严格(属性数据的充分与否一定程度上决定了模型的泛化能力)

3.2 OD Forecasting

  • 问题定义与解析
    • 定义OD Forecasting
    • 解析:
      • 数据基础:过去一段时间内的OD情况
      • 方案:时序模型构建
        • 输入:过去的OD
        • 输出:未来的OD
      • 用途:由历史数据推测未来数据
      • 缺陷:
          1. 粒度不确定:point-level; matrix-level(city-level); 可以想见的是,预测范围越广,模型越为复杂
          1. OD数据需要具备时间属性
      • 优势:可以在没有任何其他辅助数据的情况下进行OD预测

3.3 OD Construction

  • 问题定义与解析
    • 定义:OD construction
    • 解析:
      • 数据基础:易获取的信息
      • 方案:基于前期获取的信息构建出完整的城市OD Matrix
      • 优势
          1. 无需任何前置OD数据

3.4 OD Estimation

  • 问题定义与解析
    • 定义:OD Estimation
    • 解析:
      • 数据基础:在不同地点采集(例如路段、交叉口等)的具有时间标签的交通agent数量(或其他可用数据)
      • 方案:基于观测数据推测OD流

4 OD Data

4.1 Basic Infor About OD Data

  • 用于OD研究的数据一般可以分为两类
    • 基础OD流数据
      • Survey data:问卷调查数据
      • Individual trajectories:轨迹数据
        • Call Detail Records
        • Cellular Network Access
        • GPS Records
        • Location-based Social Network Check-ins
        • trajectories data
      • Transportation records:交通系统记录数据
        • traffic surveillance video
        • smart cards
        • taxi orders
    • 包含其他辅助数据的OD数据
      • 常用于探究OD与城市属性的空间分布特性(例如用地属性)
      • Region-level socioeconomic data: demographics, land use patterns, points of interest (POIs), and infrastructure
      • Transportation observation data
        • Traffic Flow: link counts,即起点-目的地连线数
        • Vehicle Speed: 车速数据
      • Urban geographic data

4.2 Open Access Dataset

  • CITYDATA.ai[3]
    • Inner City
    • 提供开放数据集以供使用(数据量极大)
    • 提供访问API以供程序调用(需要申请开发者权限)
    • 没有inter-city OD
  • Datarade[4]
    • 可直接购买数据集(价格贵)
    • 可与运营公司联系获取数据集
  • Translink[5]
    • 澳大利亚Queensland公共交通数据 (public transportation)
    • example
  • Cencus[6]
    • 英国威尔士
    • 包含:
      • Migration data:1年范围内的人口迁移OD
      • Workplace data:工作相关OD数据
      • Second Address data:居住地之间的迁移
      • Student data:学生OD
  • 大数据平台
    • 腾讯位置服务[7]

Reference

[1] ‘The importance of OD data’. Accessed: Oct. 23, 2023. [Online]. Available: https://cran.r-project.org/web/packages/od/vignettes/od.html#:~:text=As%20the%20name%20suggests%2C%20origin,represented%20by%20a%20zone%20centroid).
[2] Rong, C., Ding, J., & Li, Y. (2023). An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques. ArXiv, abs/2306.10048.
[3] https://data.world/citydataai/spain-regions
[4] https://datarade.ai/use-cases/origin-destination-analysis
[5] https://www.data.qld.gov.au/dataset/translink-origin-destination-trips-2022-onwards
[6] https://www.nomisweb.co.uk/sources/census_2021_od
[7] https://heat.qq.com/wap_qqmap_big_data/qianxi_index.html

这篇关于城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/295833

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav