城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研

本文主要是介绍城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 城市群/城际OD定义
    • 2 理论模型与分析方法
      • 2.1 重力模型 Gravity Model
      • 2.2 干预机会模型 Intervening Opportunities Model
      • 2.3 辐射模型 Radiation Model
    • 3 Issues related to OD flows
      • 3.1 OD Prediction
      • 3.2 OD Forecasting
      • 3.3 OD Construction
      • 3.4 OD Estimation
    • 4 OD Data
      • 4.1 Basic Infor About OD Data
      • 4.2 Open Access Dataset
    • Reference

1 城市群/城际OD定义

  • Origin-Destination用于表示空间移动(from the origin to the destination),有时也被称为流数据(flow data)[1]
    • (Origin, Destination, Number, Mode, …)
    • Origin以及Destination表示方法:
        1. Zone ID,例如‘zone1’
        1. 坐标coordinate
    • Number: 该OD对的出行数量
    • Mode: 出行模式
      • 通常只包含1种交通方式,例如bus, train
      • 对于多交通模式出行,例如cycle-train-bus一般也只表示为一种模式,例如train
    • 一般不包含详细的路径数据(routing)
      • 可以选择routing服务基于OD来生产routing数据
      • 例如OSRM(shortest path), Google Directions API, CycleStreets.net or OpenRouteService
      • OSRM

2 理论模型与分析方法

2.1 重力模型 Gravity Model

2.2 干预机会模型 Intervening Opportunities Model

2.3 辐射模型 Radiation Model

3 Issues related to OD flows

3.1 OD Prediction

  • 问题定义与解析
    • 定义: OD prediction
    • 解析:
      • 数据基础:城市的区域(region)特征数据、区域间的OD对数据
      • 方案:基于特征数据以及OD对数据构建OD预测模型
        • 输入:region的属性特征
        • 输出:region间OD数量
      • 用途:基于部分已有数据,构建出区域属性与OD pair之间的推导模型,能够实现由已知到未知的预测
      • 缺陷:数据要求严格(属性数据的充分与否一定程度上决定了模型的泛化能力)

3.2 OD Forecasting

  • 问题定义与解析
    • 定义OD Forecasting
    • 解析:
      • 数据基础:过去一段时间内的OD情况
      • 方案:时序模型构建
        • 输入:过去的OD
        • 输出:未来的OD
      • 用途:由历史数据推测未来数据
      • 缺陷:
          1. 粒度不确定:point-level; matrix-level(city-level); 可以想见的是,预测范围越广,模型越为复杂
          1. OD数据需要具备时间属性
      • 优势:可以在没有任何其他辅助数据的情况下进行OD预测

3.3 OD Construction

  • 问题定义与解析
    • 定义:OD construction
    • 解析:
      • 数据基础:易获取的信息
      • 方案:基于前期获取的信息构建出完整的城市OD Matrix
      • 优势
          1. 无需任何前置OD数据

3.4 OD Estimation

  • 问题定义与解析
    • 定义:OD Estimation
    • 解析:
      • 数据基础:在不同地点采集(例如路段、交叉口等)的具有时间标签的交通agent数量(或其他可用数据)
      • 方案:基于观测数据推测OD流

4 OD Data

4.1 Basic Infor About OD Data

  • 用于OD研究的数据一般可以分为两类
    • 基础OD流数据
      • Survey data:问卷调查数据
      • Individual trajectories:轨迹数据
        • Call Detail Records
        • Cellular Network Access
        • GPS Records
        • Location-based Social Network Check-ins
        • trajectories data
      • Transportation records:交通系统记录数据
        • traffic surveillance video
        • smart cards
        • taxi orders
    • 包含其他辅助数据的OD数据
      • 常用于探究OD与城市属性的空间分布特性(例如用地属性)
      • Region-level socioeconomic data: demographics, land use patterns, points of interest (POIs), and infrastructure
      • Transportation observation data
        • Traffic Flow: link counts,即起点-目的地连线数
        • Vehicle Speed: 车速数据
      • Urban geographic data

4.2 Open Access Dataset

  • CITYDATA.ai[3]
    • Inner City
    • 提供开放数据集以供使用(数据量极大)
    • 提供访问API以供程序调用(需要申请开发者权限)
    • 没有inter-city OD
  • Datarade[4]
    • 可直接购买数据集(价格贵)
    • 可与运营公司联系获取数据集
  • Translink[5]
    • 澳大利亚Queensland公共交通数据 (public transportation)
    • example
  • Cencus[6]
    • 英国威尔士
    • 包含:
      • Migration data:1年范围内的人口迁移OD
      • Workplace data:工作相关OD数据
      • Second Address data:居住地之间的迁移
      • Student data:学生OD
  • 大数据平台
    • 腾讯位置服务[7]

Reference

[1] ‘The importance of OD data’. Accessed: Oct. 23, 2023. [Online]. Available: https://cran.r-project.org/web/packages/od/vignettes/od.html#:~:text=As%20the%20name%20suggests%2C%20origin,represented%20by%20a%20zone%20centroid).
[2] Rong, C., Ding, J., & Li, Y. (2023). An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques. ArXiv, abs/2306.10048.
[3] https://data.world/citydataai/spain-regions
[4] https://datarade.ai/use-cases/origin-destination-analysis
[5] https://www.data.qld.gov.au/dataset/translink-origin-destination-trips-2022-onwards
[6] https://www.nomisweb.co.uk/sources/census_2021_od
[7] https://heat.qq.com/wap_qqmap_big_data/qianxi_index.html

这篇关于城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/295833

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数