为什么80%的码农都做不了架构师?>>>
加密解密
块加密
AES
IGE 模式
ige github例子
分组模式
CTR 模式
CTR 全称为计数器模式(Counter mode),该模式由 Diffe 和 Hellman 设计。一种分组密码的模式
DH 秘钥交换算法
一种密钥交换协议,注意该算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。它可以让双方在不泄漏密钥的情况下协商出一个密钥来, 常用于保证对称加密的秘钥的安全, TLS就是这样做的。
- DH:ECDH是DH的加强版
- ECDH: DH算法的加强版, 常用的是NIST系列,但是后面curve25519
- curve25519: 实质上也是一种ECDH,但是其实现更为优秀,表现的更为安全,可能是下一代秘钥交换算法的标准。
DH go 的实现
引用git: dh go实现
// Use of this source code is governed by a license
// that can be found in the LICENSE file.// Package dh implements the Diffie-Hellman key exchange over
// multiplicative groups of integers modulo a prime.
// This also defines some commen groups described in RFC 3526.
package dhimport (cryptorand "crypto/rand""errors""io""math/big"
)var zero *big.Int = big.NewInt(0)
var one *big.Int = big.NewInt(1)
var two *big.Int = big.NewInt(2)// IsSafePrime returns true, if the prime of the group is
// a so called safe-prime. For a group with a safe-prime prime
// number the Decisional-Diffie-Hellman-Problem (DDH) is a
// 'hard' problem. The n argument is the number of iterations
// for the probabilistic prime test.
// It's recommend to use DDH-safe groups for DH-exchanges.
func IsSafePrimeGroup(g *Group, n int) bool {q := new(big.Int).Sub(g.P, one)q = q.Div(q, two)return q.ProbablyPrime(n)
}// PublicKey is the type of DH public keys.
type PublicKey *big.Int// PrivateKey is the type of DH private keys.
type PrivateKey *big.Int// Group represents a mathematical group defined
// by a large prime and a generator.
type Group struct {P *big.Int // The primeG *big.Int // The generator
}// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func (g *Group) GenerateKey(rand io.Reader) (private PrivateKey, public PublicKey, err error) {if g.P == nil {panic("crypto/dh: group prime is nil")}if g.G == nil {panic("crypto/dh: group generator is nil")}if rand == nil {rand = cryptorand.Reader}// Ensure, that p.G ^ privateKey > than g.P// (only modulo calculations are safe)// The minimal (and common) value for p.G is 2// So 2 ^ (1 + 'bitsize of p.G') > than g.Pmin := big.NewInt(int64(g.P.BitLen() + 1)) //生成一个不小于p的大数bytes := make([]byte, (g.P.BitLen()+7)/8) //bit/8 = byte, +7 是为了补空,放置少除了,然后长度不够for private == nil {_, err = io.ReadFull(rand, bytes)if err != nil {private = nilreturn}// Clear bits in the first byte to increase// the probability that the candidate is < g.P.bytes[0] = 0if private == nil {private = new(big.Int)}(*private).SetBytes(bytes) //将读到的数据设置进private中if (*private).Cmp(min) < 0 { //private 小于 一个不小于p的数。 如x < y返回-1;如x > y返回+1;否则返回0。private = nil}}public = new(big.Int).Exp(g.G, private, g.P) //x**y mod |m| = A = g**a mod preturn
}// PublicKey returns the public key corresponding to the given private one.
func (g *Group) PublicKey(private PrivateKey) (public PublicKey) {public = new(big.Int).Exp(g.G, private, g.P)return
}//private returns a non-nil error if the given public key is
// not a possible element of the group. This means, that the
// public key is < 0 or > g.P.
func (g *Group) Check(peersPublic PublicKey) (err error) {if !((*peersPublic).Cmp(zero) >= 0 && (*peersPublic).Cmp(g.P) == -1) {err = errors.New("peer's public is not a possible group element")}return
}// ComputeSecret returns the secret computed from
// the own private and the peer's public key.
func (g *Group) ComputeSecret(private PrivateKey, peersPublic PublicKey) (secret *big.Int) {secret = new(big.Int).Exp(peersPublic, private, g.P)return
}
ECDH
全称是Elliptic Curve Diffie-Hellman, 是DH算法的加强版, 基于椭圆曲线难题加密, 现在是主流的密钥交换算法。
ECC是建立在基于椭圆曲线的离散对数的难度, 大概过程如下:
给定椭圆曲线上的一个点P,一个整数k,求解Q=kP很容易;给定一个点P、Q,知道Q=kP,求整数k确是一个难题。ECDH即建立在此数学难题之上
ECDH 和 curve25519 go的实现
引用: 密码学简介与Golang的加密库Crypto的使用
package main
import ("crypto""crypto/elliptic""crypto/rand""fmt""io""math/big""golang.org/x/crypto/curve25519"
)
// ECDH 秘钥交换算法的主接口
type ECDH interface {GenerateKey(io.Reader) (crypto.PrivateKey, crypto.PublicKey, error)Marshal(crypto.PublicKey) []byteUnmarshal([]byte) (crypto.PublicKey, bool)GenerateSharedSecret(crypto.PrivateKey, crypto.PublicKey) ([]byte, error)
}
type ellipticECDH struct {ECDHcurve elliptic.Curve
}
type ellipticPublicKey struct {elliptic.CurveX, Y *big.Int
}
type ellipticPrivateKey struct {D []byte
}
// NewEllipticECDH 指定一种椭圆曲线算法用于创建一个ECDH的实例
// 关于椭圆曲线算法标准库里面实现了4种: 见crypto/elliptic
func NewEllipticECDH(curve elliptic.Curve) ECDH {return &ellipticECDH{curve: curve,}
}
// GenerateKey 基于标准库的NIST椭圆曲线算法生成秘钥对
func (e *ellipticECDH) GenerateKey(rand io.Reader) (crypto.PrivateKey, crypto.PublicKey, error) {var d []bytevar x, y *big.Intvar priv *ellipticPrivateKeyvar pub *ellipticPublicKeyvar err errord, x, y, err = elliptic.GenerateKey(e.curve, rand)if err != nil {return nil, nil, err}priv = &ellipticPrivateKey{D: d,}pub = &ellipticPublicKey{Curve: e.curve,X: x,Y: y,}return priv, pub, nil
}
// Marshal用于公钥的序列化
func (e *ellipticECDH) Marshal(p crypto.PublicKey) []byte {pub := p.(*ellipticPublicKey)return elliptic.Marshal(e.curve, pub.X, pub.Y)
}
// Unmarshal用于公钥的反序列化
func (e *ellipticECDH) Unmarshal(data []byte) (crypto.PublicKey, bool) {var key *ellipticPublicKeyvar x, y *big.Intx, y = elliptic.Unmarshal(e.curve, data)if x == nil || y == nil {return key, false}key = &ellipticPublicKey{Curve: e.curve,X: x,Y: y,}return key, true
}
// GenerateSharedSecret 通过自己的私钥和对方的公钥协商一个共享密码
func (e *ellipticECDH) GenerateSharedSecret(privKey crypto.PrivateKey, pubKey crypto.PublicKey) ([]byte, error) {priv := privKey.(*ellipticPrivateKey)pub := pubKey.(*ellipticPublicKey)x, _ := e.curve.ScalarMult(pub.X, pub.Y, priv.D)return x.Bytes(), nil
}
// NewCurve25519ECDH 使用密码学家Daniel J. Bernstein的椭圆曲线算法:Curve25519来创建ECDH实例
// 因为Curve25519独立于NIST之外, 没在标准库实现, 需要单独为期实现一套接口来支持ECDH
func NewCurve25519ECDH() ECDH {return &curve25519ECDH{}
}
type curve25519ECDH struct {ECDH
}
// GenerateKey 基于curve25519椭圆曲线算法生成秘钥对
func (e *curve25519ECDH) GenerateKey(rand io.Reader) (crypto.PrivateKey, crypto.PublicKey, error) {var pub, priv [32]bytevar err error_, err = io.ReadFull(rand, priv[:])if err != nil {return nil, nil, err}priv[0] &= 248priv[31] &= 127priv[31] |= 64curve25519.ScalarBaseMult(&pub, &priv)return &priv, &pub, nil
}
// 实现公钥的序列化
func (e *curve25519ECDH) Marshal(p crypto.PublicKey) []byte {pub := p.(*[32]byte)return pub[:]
}
// 实现公钥的反序列化
func (e *curve25519ECDH) Unmarshal(data []byte) (crypto.PublicKey, bool) {var pub [32]byteif len(data) != 32 {return nil, false}copy(pub[:], data)return &pub, true
}
// 实现秘钥协商接口
func (e *curve25519ECDH) GenerateSharedSecret(privKey crypto.PrivateKey, pubKey crypto.PublicKey) ([]byte, error) {var priv, pub, secret *[32]bytepriv = privKey.(*[32]byte)pub = pubKey.(*[32]byte)secret = new([32]byte)curve25519.ScalarMult(secret, priv, pub)return secret[:], nil
}
func test(e ECDH) {var privKey1, privKey2 crypto.PrivateKeyvar pubKey1, pubKey2 crypto.PublicKeyvar pubKey1Buf, pubKey2Buf []bytevar err errorvar ok boolvar secret1, secret2 []byte// 准备2对秘钥对,A: privKey1,pubKey1 B:privKey2,pubKey2privKey1, pubKey1, err = e.GenerateKey(rand.Reader)if err != nil {fmt.Println(err)}privKey2, pubKey2, err = e.GenerateKey(rand.Reader)if err != nil {fmt.Println(err)}pubKey1Buf = e.Marshal(pubKey1)pubKey2Buf = e.Marshal(pubKey2)pubKey1, ok = e.Unmarshal(pubKey1Buf)if !ok {fmt.Println("Unmarshal does not work")}pubKey2, ok = e.Unmarshal(pubKey2Buf)if !ok {fmt.Println("Unmarshal does not work")}// A 通过B给的公钥协商共享密码secret1, err = e.GenerateSharedSecret(privKey1, pubKey2)if err != nil {fmt.Println(err)}// B 通过A给的公钥协商共享密码secret2, err = e.GenerateSharedSecret(privKey2, pubKey1)if err != nil {fmt.Println(err)}// A B在没暴露直接的私钥的情况下, 协商出了一个共享密码fmt.Printf("The secret1 shared keys: %x\n", secret1)fmt.Printf("The secret2 shared keys: %x\n", secret2)
}
func main() {e1 := NewEllipticECDH(elliptic.P521())e2 := NewCurve25519ECDH()test(e1)test(e2)
}
参考
CTF Wiki
Go语言实现AES加密算法(CTR模式)
密码学简介与Golang的加密库Crypto的使用
秘密的实质——密钥
dh go实现
dh 维基百科 迪菲-赫尔曼密钥交换
GO加密解密之RSA