Python 低通 高通 理想滤波器 巴特沃斯 数字图像处理 频域滤波 图像增强

本文主要是介绍Python 低通 高通 理想滤波器 巴特沃斯 数字图像处理 频域滤波 图像增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题

(一)频域低通滤波

  1. 产生白条图像 f1(x,y)(640×640 大小,中间亮条宽160,高 400,居中,暗处=0,亮处=255)
  2. 设计不同截止频率的理想低通滤波器、Butterworth低通滤波器,对其进行频域增强。观察频域滤波效果,并解释之。

(二)频域高通滤波

  1. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对上述白条图像进行频域增强。观察频域滤波效果,并解释之。
  2. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对含高斯噪声的lena图像进行频域增强。观察频域滤波效果,并解释之。

代码

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt"""
(一)频域低通滤波
产生如图所示图象 f1(x,y)(64×64 大小,中间亮条宽16,高 40,居中,暗处=0,亮处=255)
产生实验四中的白条图像。
设计不同截止频率的理想低通滤波器、Butterworth低通滤波器,对其进行频域增强。
观察频域滤波效果,并解释之。
"""def pro_11():def ideal_low_filter(lr, cr, cc, img):tmp = np.zeros((img.shape[0], img.shape[1]))for i in range(img.shape[0]):for j in range(img.shape[1]):tmp[i, j] = (1 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 0)return tmp# 产生白条图像im_arr = np.zeros((640, 640))for i in range(im_arr.shape[0]):for j in range(im_arr.shape[1]):if 120 < i < 520 and 240 < j < 400:im_arr[i, j] = 255im_ft2 = np.fft.fft2(np.array(im_arr))  # 白条图二维傅里叶变换矩阵im_ft2_shift = np.fft.fftshift(im_ft2)r, c = im_arr.shape[0], im_arr.shape[1]cr, cc = r // 2, c // 2  # 频谱中心# 理想滤波器ideal_filter1 = ideal_low_filter(10, cr, cc, im_ft2_shift)ideal_filter2 = ideal_low_filter(30, cr, cc, im_ft2_shift)# 求经理想低通滤波器后的图像tmp = im_ft2_shift * ideal_filter1irreversed_im_ft2 = np.fft.ifft2(tmp)tmp2 = im_ft2_shift * ideal_filter2irreversed_im_ft22 = np.fft.ifft2(tmp2)plt.figure(figsize=(13, 13))plt.subplot(221)plt.imshow(Image.fromarray(np.abs(im_arr)))plt.subplot(223)plt.imshow(Image.fromarray(np.abs(im_ft2_shift)))plt.subplot(222)plt.title("lr=10")plt.imshow(Image.fromarray(np.abs(irreversed_im_ft2)))plt.subplot(224)plt.title("lr=30")plt.imshow(Image.fromarray(np.abs(irreversed_im_ft22)))plt.show()def pro_12():def butterworth(lr, cr, cc, n, img):tmp = np.zeros((img.shape[0], img.shape[1]))for i in range(img.shape[0]):for j in range(img.shape[1]):tmp[i, j] = 1 / (1 + np.sqrt((i - cr) ** 2 + (j - cc) ** 2) / lr) ** (2 * n)return tmp# 产生白条图像im_arr = np.zeros((640, 640))for i in range(im_arr.shape[0]):for j in range(im_arr.shape[1]):if 120 < i < 520 and 240 < j < 400:im_arr[i, j] = 255im_ft2 = np.fft.fft2(np.array(im_arr))  # 白条图二维傅里叶变换矩阵im_ft2_shift = np.fft.fftshift(im_ft2)r, c = im_arr.shape[0], im_arr.shape[1]cr, cc = r // 2, c // 2  # 频谱中心# 理想滤波器butterworth1 = butterworth(10, cr, cc, 2, im_arr)butterworth2 = butterworth(30, cr, cc, 2, im_arr)# 求经理想低通滤波器后的图像tmp = im_ft2_shift * butterworth1irreversed_im_ft2 = np.fft.ifft2(tmp)tmp2 = im_ft2_shift * butterworth2irreversed_im_ft22 = np.fft.ifft2(tmp2)plt.figure(figsize=(13, 13))plt.subplot(221)plt.imshow(Image.fromarray(np.abs(im_arr)))plt.subplot(223)plt.imshow(Image.fromarray(np.abs(im_ft2_shift)))plt.subplot(222)plt.title("lr=10")plt.imshow(Image.fromarray(np.abs(irreversed_im_ft2)))plt.subplot(224)plt.title("lr=30")plt.imshow(Image.fromarray(np.abs(irreversed_im_ft22)))plt.show()def pro_12():def ideal_low_filter(lr, cr, cc, img):tmp = np.zeros((img.shape[0], img.shape[1]))for i in range(img.shape[0]):for j in range(img.shape[1]):tmp[i, j] = (1 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 0)return tmpdef butterworth(lr, cr, cc, n, img):tmp = np.zeros((img.shape[0], img.shape[1]))for i in range(img.shape[0]):for j in range(img.shape[1]):tmp[i, j] = 1 / (1 + np.sqrt((i - cr) ** 2 + (j - cc) ** 2) / lr) ** (2 * n)return tmpdef gauss_noise(img, sigma):temp_img = np.float64(np.copy(img))h = temp_img.shape[0]w = temp_img.shape[1]noise = np.random.randn(h, w) * sigmanoisy_img = np.zeros(temp_img.shape, np.float64)if len(temp_img.shape) == 2:noisy_img = temp_img + noiseelse:noisy_img[:, :, 0] = temp_img[:, :, 0] + noisenoisy_img[:, :, 1] = temp_img[:, :, 1] + noisenoisy_img[:, :, 2] = temp_img[:, :, 2] + noise# noisy_img = noisy_img.astype(np.uint8)return noisy_imglena = np.array(Image.open("lena_gray_512.tif"))noise_lena = gauss_noise(lena, 25)noise_lena_fft2 = np.fft.fft2(noise_lena)noise_lena_fft2_shift = np.fft.fftshift(noise_lena_fft2)r, c = lena.shape[0], lena.shape[1]cr, cc = r // 2, c // 2  # 频谱中心butterworth1 = butterworth(30, cr, cc, 2, lena)butterworth2 = butterworth(50, cr, cc, 2, lena)ideal_filter1 = ideal_low_filter(10, cr, cc, noise_lena_fft2_shift)ideal_filter2 = ideal_low_filter(30, cr, cc, noise_lena_fft2_shift)btmp1 = noise_lena_fft2_shift * butterworth1blena_ift21 = np.fft.ifft2(btmp1)btmp2 = noise_lena_fft2_shift * butterworth2blena_ift22 = np.fft.ifft2(btmp2)itmp1 = noise_lena_fft2_shift * ideal_filter1ilena_ift21 = np.fft.ifft2(itmp1)itmp2 = noise_lena_fft2_shift * ideal_filter2ilena_ift22 = np.fft.ifft2(itmp2)plt.figure(figsize=(13, 13))plt.subplot(221)plt.title("Butterworth Filter: lr=30/100")plt.imshow(Image.fromarray(np.abs(blena_ift21)))plt.subplot(223)plt.imshow(Image.fromarray(np.abs(blena_ift22)))plt.subplot(222)plt.title("Ideal Filter: lr=10/30")plt.imshow(Image.fromarray(np.abs(ilena_ift21)))plt.subplot(224)plt.imshow(Image.fromarray(np.abs(ilena_ift22)))plt.show()"""
(二)频域高通滤波
1. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对上述白条图像进行频域增强。观察频域滤波效果,并解释之。
2. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对含高斯噪声的lena图像进行频域增强。观察频域滤波效果,并解释之。
"""def pro_2():def ideal_high_filter(lr, cr, cc, img):tmp = np.zeros((img.shape[0], img.shape[1]))for i in range(img.shape[0]):for j in range(img.shape[1]):tmp[i, j] = (0 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 1)return tmpdef butterworth_high(lr, cr, cc, n, img):tmp = np.zeros((img.shape[0], img.shape[1]))for i in range(img.shape[0]):for j in range(img.shape[1]):tmp[i, j] = 1 / (1 + lr / np.sqrt((i - cr) ** 2 + (j - cc) ** 2)) ** (2 * n)return tmpdef gauss_noise(img, sigma):temp_img = np.float64(np.copy(img))h = temp_img.shape[0]w = temp_img.shape[1]noise = np.random.randn(h, w) * sigmanoisy_img = np.zeros(temp_img.shape, np.float64)if len(temp_img.shape) == 2:noisy_img = temp_img + noiseelse:noisy_img[:, :, 0] = temp_img[:, :, 0] + noisenoisy_img[:, :, 1] = temp_img[:, :, 1] + noisenoisy_img[:, :, 2] = temp_img[:, :, 2] + noise# noisy_img = noisy_img.astype(np.uint8)return noisy_imgdef lena_proceed():lena = np.array(Image.open("lena_gray_512.tif"))noise_lena = gauss_noise(lena, 25)noise_lena_fft2 = np.fft.fft2(noise_lena)noise_lena_fft2_shift = np.fft.fftshift(noise_lena_fft2)r, c = lena.shape[0], lena.shape[1]cr, cc = r // 2, c // 2  # 频谱中心butterworth1 = butterworth_high(10, cr, cc, 1, lena)butterworth2 = butterworth_high(5, cr, cc, 1, lena)ideal_filter1 = ideal_high_filter(10, cr, cc, noise_lena_fft2_shift)ideal_filter2 = ideal_high_filter(30, cr, cc, noise_lena_fft2_shift)btmp1 = noise_lena_fft2_shift * butterworth1blena_ift21 = np.fft.ifft2(btmp1)btmp2 = noise_lena_fft2_shift * butterworth2blena_ift22 = np.fft.ifft2(btmp2)itmp1 = noise_lena_fft2_shift * ideal_filter1ilena_ift21 = np.fft.ifft2(itmp1)itmp2 = noise_lena_fft2_shift * ideal_filter2ilena_ift22 = np.fft.ifft2(itmp2)plt.figure(figsize=(13, 13))plt.subplot(221)plt.title("Butterworth Filter: lr=30/5")plt.imshow(Image.fromarray(np.abs(blena_ift21)))plt.subplot(223)plt.imshow(Image.fromarray(np.abs(blena_ift22)))plt.subplot(222)plt.title("Ideal Filter: lr=10/30")plt.imshow(Image.fromarray(np.abs(ilena_ift21)))plt.subplot(224)plt.imshow(Image.fromarray(np.abs(ilena_ift22)))plt.show()def white_bar_proceed():# 产生白条图像im_arr = np.zeros((640, 640))for i in range(im_arr.shape[0]):for j in range(im_arr.shape[1]):if 120 < i < 520 and 240 < j < 400:im_arr[i, j] = 255im_ft2 = np.fft.fft2(np.array(im_arr))  # 白条图二维傅里叶变换矩阵im_ft2_shift = np.fft.fftshift(im_ft2)r, c = im_arr.shape[0], im_arr.shape[1]cr, cc = r // 2, c // 2  # 频谱中心butterworth1 = butterworth_high(30, cr, cc, 1, im_arr)butterworth2 = butterworth_high(5, cr, cc, 1, im_arr)ideal_filter1 = ideal_high_filter(10, cr, cc, im_ft2_shift)ideal_filter2 = ideal_high_filter(30, cr, cc, im_ft2_shift)btmp1 = im_ft2_shift * butterworth1blena_ift21 = np.fft.ifft2(btmp1)btmp2 = im_ft2_shift * butterworth2blena_ift22 = np.fft.ifft2(btmp2)itmp1 = im_ft2_shift * ideal_filter1ilena_ift21 = np.fft.ifft2(itmp1)itmp2 = im_ft2_shift * ideal_filter2ilena_ift22 = np.fft.ifft2(itmp2)plt.figure(figsize=(13, 13))plt.subplot(221)plt.title("Butterworth Filter: lr=30/5")plt.imshow(Image.fromarray(np.abs(blena_ift21)))plt.subplot(223)plt.imshow(Image.fromarray(np.abs(blena_ift22)))plt.subplot(222)plt.title("Ideal Filter: lr=10/30")plt.imshow(Image.fromarray(np.abs(ilena_ift21)))plt.subplot(224)plt.imshow(Image.fromarray(np.abs(ilena_ift22)))plt.show()lena_proceed()white_bar_proceed()if __name__ == '__main__':pro_11()pro_12()pro_2()

结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Python 低通 高通 理想滤波器 巴特沃斯 数字图像处理 频域滤波 图像增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/289570

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数