分析Airbnb新用户订房地点

2023-10-27 18:59

本文主要是介绍分析Airbnb新用户订房地点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先先导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sk
import datetime
import os
import seaborn as sns

-----------------------------------------------------------------------------------

其次导入数据

train = pd.read_csv('/Users/qinpeng/Documents/airbnb/train_users_2.csv',sep=',')
test = pd.read_csv('/Users/qinpeng/Documents/airbnb/test_users.csv',sep=',')

-----------------------------------------------------------------------------------

观测数据

train.head()
train.shape
test.shape
print(train.shape)
print(test.shape)
train.info()
test.info()
(213451, 16)
(62096, 15)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 213451 entries, 0 to 213450
Data columns (total 16 columns):
id                         213451 non-null object
date_account_created       213451 non-null object
timestamp_first_active     213451 non-null int64
date_first_booking         88908 non-null object
gender                     213451 non-null object
age                        125461 non-null float64
signup_method              213451 non-null object
signup_flow                213451 non-null int64
language                   213451 non-null object
affiliate_channel          213451 non-null object
affiliate_provider         213451 non-null object
first_affiliate_tracked    207386 non-null object
signup_app                 213451 non-null object
first_device_type          213451 non-null object
first_browser              213451 non-null object
country_destination        213451 non-null object
dtypes: float64(1), int64(2), object(13)
memory usage: 26.1+ MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62096 entries, 0 to 62095
Data columns (total 15 columns):
id                         62096 non-null object
date_account_created       62096 non-null object
timestamp_first_active     62096 non-null int64
date_first_booking         0 non-null float64
gender                     62096 non-null object
age                        33220 non-null float64
signup_method              62096 non-null object
signup_flow                62096 non-null int64
language                   62096 non-null object
affiliate_channel          62096 non-null object
affiliate_provider         62096 non-null object
first_affiliate_tracked    62076 non-null object
signup_app                 62096 non-null object
first_device_type          62096 non-null object
first_browser              62096 non-null object
dtypes: float64(2), int64(2), object(11)
memory usage: 7.1+ MB

可以看出train共有观测213451条,16个变量,test共有62096条,15个变量

可以看到里面缺失的列的数量

date_first_booking         0 non-null float64

为什么全是空置,因为需要预测住房地点,所以此列为全空

-----------------------------------------------------------------------------------


-----------------------------------------------------------------------------------

train_features = train.columns
test_features = test.columns
np.setdiff1d(train_features,test_features)
dac_train = train.date_account_created.value_counts()
dac_test = test.date_account_created.value_counts()
print('training dataset:\n')
print(dac_train.describe())
print('\n' + '***' * 15 + '\n')
print('test dataset:\n')
print(dac_test.describe())
print('training dateset:')
print(dac_train.head())
print(dac_train.tail())
training dataset:count    1634.000000
mean      130.630967
std       139.327895
min         1.000000
25%        15.000000
50%        79.000000
75%       201.000000
max       674.000000
Name: date_account_created, dtype: float64*********************************************test dataset:count      92.000000
mean      674.956522
std       122.568116
min       401.000000
25%       606.750000
50%       662.000000
75%       739.000000
max      1105.000000
Name: date_account_created, dtype: float64
training dateset:
2014-05-13    674
2014-06-24    670
2014-06-25    636
2014-05-20    632
2014-05-14    622
Name: date_account_created, dtype: int64
2010-03-09    1
2010-04-24    1
2010-01-23    1
2010-02-14    1
2010-04-11    1
Name: date_account_created, dtype: int64

上面图说明train注册的不同天数有1634个不同的天数,test有92个不同的天数,train最小值是1,最大值674

trainng中2014-5-13有674个

-----------------------------------------------------------------------------------

数据集train显示2010-1-1到2014-6-30的数据

数据集test显示2014-6-30到2014-9-30的数据

dac_train_date = pd.to_datetime(dac_train.index)
print('the start date of training dataset is :{}'.format(dac_train_date.min()))
print('the end date of training dataset is :{}'.format(dac_train_date.max()))dac_test_date = pd.to_datetime(dac_test.index)
print('the start date of test dataset is :{}'.format(dac_test_date.min()))
print('the end date of test dataset is :{}'.format(dac_test_date.max()))
the start date of training dataset is :2010-01-01 00:00:00
the end date of training dataset is :2014-06-30 00:00:00
the start date of test dataset is :2014-07-01 00:00:00
the end date of test dataset is :2014-09-30 00:00:00

-----------------------------------------------------------------------------------

dac_train_day = dac_train_date - dac_train_date.min()
dac_test_day = dac_test_date - dac_test_date.min()
print(dac_train_day)
print(dac_test_day)
TimedeltaIndex(['1593 days', '1635 days', '1636 days', '1600 days','1594 days', '1614 days', '1601 days', '1627 days','1622 days', '1641 days',...'18 days',   '27 days',    '2 days',    '0 days','1 days',   '67 days',  '113 days',   '22 days','44 days',  '100 days'],dtype='timedelta64[ns]', length=1634, freq=None)
TimedeltaIndex(['22 days', '21 days', '16 days', '23 days', '17 days','20 days', '57 days', '56 days', '28 days', '36 days','29 days', '42 days', '41 days', '58 days', '35 days','27 days', '15 days', '24 days', '77 days', '30 days','44 days', '49 days', '71 days', '37 days', '19 days','38 days', '43 days', '64 days', '34 days', '55 days','85 days', '18 days', '26 days', '84 days', '91 days','31 days', '63 days', '90 days', '51 days', '25 days','69 days', '65 days', '39 days', '48 days', '52 days','7 days', '46 days', '14 days', '50 days', '70 days','83 days', '79 days', '45 days', '60 days',  '1 days','76 days', '72 days', '33 days', '13 days',  '2 days','6 days', '59 days', '61 days', '66 days', '78 days','53 days',  '8 days', '47 days',  '9 days', '54 days','80 days', '40 days', '73 days',  '0 days', '74 days','62 days', '32 days', '68 days', '88 days', '67 days','82 days', '86 days', '75 days', '81 days', '87 days','10 days', '89 days',  '5 days', '11 days',  '3 days','4 days', '12 days'],dtype='timedelta64[ns]', freq=None)
注册时间和使用时间的时间间隔

-----------------------------------------------------------------------------------

plt.scatter(dac_train_day.days,dac_train.values,color = 'r',label= 'train dataset')
plt.scatter(dac_test_day.days,dac_test.values,color = 'b',label = 'test dataset')plt.title('Accounts created vs day')
plt.xlabel('Days')
plt.ylabel('Accounts created')
plt.legend(loc = 'upper left')
<matplotlib.legend.Legend at 0x1a0b68db38>
会发现注册人数持续上升

-----------------------------------------------------------------------------------

tra_train_df = train.timestamp_first_active.astype(str).apply(lambda x:datetime.datetime(int(x[:4]),int(x[4:6]),int(x[6:8]),int(x[8:10]),int(x[10:12]),int(x[12:])))
tra_test_df = test.timestamp_first_active.astype(str).apply(lambda x:datetime.datetime(int(x[:4]),int(x[4:6]),int(x[6:8]),int(x[8:10]),int(x[10:12]),int(x[12:])))
20090319043255把这样的时间转换成标准的时间格式2009-03-19 04:32:55

-----------------------------------------------------------------------------------

print(train[train.age<15].age.shape)
print(train[train.age>80].age.shape)
print(test[test.age<15].age.shape)
print(test[test.age>80].age.shape)
(57,)
(2771,)
(2,)
(417,)

可以看到有train里面有57个小于15岁的,大于80岁的有2771个,test小于15岁的有2个,大于80岁的有417个,属于极值吧

-----------------------------------------------------------------------------------

plt.scatter(train.age.value_counts().index.values,train.age.value_counts().values,color='r',label='training')
plt.scatter(test.age.value_counts().index.values,test.age.value_counts().values,color='b',label='test')plt.title('Counts at different ages')
plt.xlabel('Age')
plt.ylabel('Counts od id')
plt.legend(loc = 'upper right',fontsize = 15)
<matplotlib.legend.Legend at 0x1a0bc15f98>
从图中看出大部分都在0-100多岁之间,有一小部分在2000岁左右,最长寿老人好像117岁
-----------------------------------------------------------------------------------

age_train = [train[train.age.isnull()].age.shape[0],train.query('age<15').age.shape[0],train.query('age>=15 & age<=80').age.shape[0],train.query('age>80').age.shape[0]]age_test = [test[test.age.isnull()].age.shape[0],test.query('age<15').age.shape[0],test.query('age>=15 & age<=80').age.shape[0],test.query('age>80').age.shape[0]]
columns = ['Null','age<15','age','age>80']
fig, (ax1,ax2) = plt.subplots(1,2,sharex=True,sharey=True,figsize=(10,5))sns.barplot(columns,age_train,ax=ax1)
sns.barplot(columns,age_test,ax=ax2)ax1.set_title('training dataset')
ax2.set_title('test dataset')
ax1.set_ylabel('counts')
Text(0,0.5,'counts')

我用柱状图把年龄分成几段,空值分一段,小于15岁分成一段,大于80岁分成一段,绿色属于正常值范围,蓝色属于空值,红色属于千年老妖

-----------------------------------------------------------------------------------

ohe_feats = ['gender','signup_method','signup_flow','language','affiliate_channel','affiliate_provider','first_affiliate_tracked','signup_app','first_device_type','first_browser']
def feature_barplot(feature, df_train = train, df_test=test, figsize=(10,5),rot=90,saveimg = False):feat_train = df_train[feature].value_counts()feat_test = df_test[feature].value_counts()fig_feature, (axis1,axis2) = plt.subplots(1,2,sharex=True,sharey=True,figsize=figsize)sns.barplot(feat_train.index.values, feat_train.values, ax= axis1)sns.barplot(feat_test.index.values, feat_test.values, ax= axis2)axis1.set_xticklabels(axis1.xaxis.get_majorticklabels(), rotation = rot)axis2.set_xticklabels(axis1.xaxis.get_majorticklabels(), rotation = rot)axis1.set_title(feature + ' of training dataset')axis2.set_title(feature + ' of test dataset')axis1.set_ylabel('Counts')plt.tight_layout()if saveimg ==True:figname = feature + '.png'fig_feature.savefig(figname, dpi = 75)
train.gender.value_counts()

性别区分

-unknown-    95688
FEMALE       63041
MALE         54440
OTHER          282
Name: gender, dtype: int64
可以看train到空值有9万多,男的有5万多,女士6万多
-unknown-    33792
FEMALE       14483
MALE         13769
OTHER           52
Name: gender, dtype: int64

可以看test到空值有3万多,男的有1.3万多,女士1.4万多

feature_barplot('gender',saveimg= True)

-----------------------------------------------------------------------------------

feature_barplot('signup_method')

注册方式,最多的是basic,其次是facebook,最后是谷歌

-----------------------------------------------------------------------------------

for feat in ohe_feats:feature_barplot(feature=feat)

男女人数分布图


注册方式分布图


从那个页面进来注册的,0是主页注册页面


英语第一,因为Airbnb是美国公司,所以第一吧,中文第二


从什么地方引流过来的


付费推广的渠道



注册最多的是浏览器


台式机mac最多是最多,可能美国台式mac比较多吧,毕竟是发达国家嘛


Airbnb使用时候的浏览器

-----------------------------------------------------------------------------------

通过上面可以发现,年龄的极值需要处理,性别空值需要处理

下面开始查看session数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sk
import datetime
from datetime import date
import seaborn as sns
from sklearn.preprocessing import *
from sklearn.preprocessing import LabelEncoder #标准化标签,将标签值统一转换成range(标签值个数-1)范围内
from sklearn.cross_validation import StratifiedShuffleSplit#数据集划分
df_sessions.head()

	action	action_type	action_detail	device_type	secs_elapsed	id
0	lookup	NaN	NaN	Windows Desktop	319.0	d1mm9tcy42
1	search_results	click	view_search_results	Windows Desktop	67753.0	d1mm9tcy42
2	lookup	NaN	NaN	Windows Desktop	301.0	d1mm9tcy42
3	search_results	click	view_search_results	Windows Desktop	22141.0	d1mm9tcy42
4	lookup	NaN	NaN	Windows Desktop	435.0	d1mm9tcy42

可以看到id有重复的,说明一个用户有多次操作

df_sessions.shape
(10567737, 6)

有多少用户呢

dgr_sess = df_sessions.groupby(['id'])
共有135483用户制造出了1000多万的数据

查看session有多少空值

df_sessions.isnull().sum()
action             79626
action_type      1126204
action_detail    1126204
device_type            0
secs_elapsed      136031
id                 34496
dtype: int64

对空置进行处理,先对空置进行NAN填充,因为有些空值是Nan,none等,所以对空值进行统一填充

print('Working on Session data...')df_sessions.action = df_sessions.action.fillna('NAN')
df_sessions.action_type = df_sessions.action_type.fillna('NAN')
df_sessions.action_detail = df_sessions.action_detail.fillna('NAN')
df_sessions.device_type = df_sessions.device_type.fillna('NAN')

-----------------------------------------------------------------------------------

act_freq = 100
act = dict(zip(df_sessions.action.value_counts().index,df_sessions.action.value_counts().values))
df_sessions.action = df_sessions.action.apply(lambda x: 'OTHER' if act[x] < act_freq else x)
f_act = df_sessions.action.value_counts().argsort()
f_act_detail = df_sessions.action_detail.value_counts().argsort() #对action_detail频繁进行排序
f_act_type = df_sessions.action_type.value_counts().argsort()    #对action_type频繁进行排序
f_dev_type = df_sessions.device_type.value_counts().argsort()
print(f_act.shape)
print(f_act_detail.shape)
print(f_act_type.shape)
print(f_dev_type.shape)

因为有不频繁的值,所以把小于100的进行OTHER归类,归类特别细致的话会对模型没有朴实性

df_sessions.action.value_counts()

-----------------------------------------------------------------------------------

samples = []
cont = 0
In = len(dgr_sess)for g in dgr_sess:if cont%1000 ==0:print('%s from %s'%(cont,In))  #提示打印多少行数据了gr = g[1]l = []l.append(g[0])l.append(len(gr))sev = gr.secs_elapsed.fillna(0).valuesc_act = [0] * len(f_act)for i,v in enumerate(gr.action.values):c_act[f_act[v]] += 1_, c_act_uqc = np.unique(gr.action.values,return_counts=True)c_act += [len(c_act_uqc), np.mean(c_act_uqc), np.std(c_act_uqc)]l = l + c_actc_act_detail = [0] * len(f_act_detail)for i,v in enumerate(gr.action_detail.values):c_act_detail[f_act_detail[v]] += 1_, c_act_det_uqc = np.unique(gr.action_detail.values,return_counts=True)c_act_detail += [len(c_act_det_uqc), np.mean(c_act_det_uqc), np.std(c_act_det_uqc)]l = l + c_act_detaill_act_type = [0] * len(f_act_type)c_act_type = [0] * len(f_act_type)for i,v in enumerate(gr.action_type.values):l_act_type[f_act_type[v]] += sev[i]c_act_type[f_act_type[v]] += 1l_act_type = np.log(1 + np.array(l_act_type)).tolist()_, c_act_type_uqc = np.unique(gr.action_type.values,return_counts=True)c_act_type += [len(c_act_type_uqc), np.mean(c_act_type_uqc), np.std(c_act_type_uqc)]l = l + c_act_type + l_act_typec_dev_type = [0] * len(f_dev_type)for i,v in enumerate(gr.device_type.values):c_dev_type[f_dev_type[v]] += 1c_dev_type.append(len(np.unique(gr.device_type.values)))_, c_dev_type_uqc = np.unique(gr.device_type.values,return_counts=True)c_dev_type += [len(c_dev_type_uqc), np.mean(c_dev_type_uqc),np.std(c_dev_type_uqc)]l = l + c_dev_typel_secs = [0] * 5l_log = [0] * 15if len(sev) > 0:l_secs[0] = np.log(1 + np.sum(sev))l_secs[1] = np.log(1 + np.mean(sev))l_secs[2] = np.log(1 + np.std(sev))l_secs[3] = np.log(1 + np.median(sev))l_secs[4] = l_secs[0] / float(l[1])log_sev = np.log(1+sev).astype(int)l_log = np.bincount(log_sev,minlength=15).tolist()l = l + l_secs + l_logsamples.append(l)cont += 1
共有135483用户承载出了1000多万的数据,所以遍历数据,以人为单位,每个人有多少个action,f_act列出所有的action,c_act求出每个人有多少个action,把这个人action这一组里面所有不同的action列出来
samples = np.array(samples)
samp_ar = samples[:,1:].astype(np.float16)
samp_id = samples[:,0]col_names = []
for i in range(len(samples[0])-1):col_names.append('c_' + str(i))
df_agg_sess = pd.DataFrame(samp_ar, columns=col_names)
df_agg_sess['id'] = samp_id
df_agg_sess.index = df_agg_sess.id

df_agg_sess.shape
(135483, 335)

现在有13万数据,335列

-----------------------------------------------------------------------------------

导入train和test数据集

train = pd.read_csv('/Users/qinpeng/Documents/airbnb/train_users_2.csv')
test = pd.read_csv('/Users/qinpeng/Documents/airbnb/test_users.csv')
train_row = train.shape[0]labels = train['country_destination'].valuesid_test = test['id']train.drop(['country_destination','date_first_booking'], axis = 1,inplace=True)
test.drop(['date_first_booking'], axis=1,inplace=True)

删除掉3行数据

df = pd.concat([train,test],axis = 0,ignore_index=True)
df.shape

把train和test两个数据进行拼接

-----------------------------------------------------------------------------------

tfa = df.timestamp_first_active.astype(str).apply(lambda x:datetime.datetime(int(x[:4]),int(x[4:6]),int(x[6:8]),int(x[8:10]),int(x[10:12]),int(x[12:])))
df['tfa_year'] = np.array([x.year for x in tfa])
df['tfa_month'] = np.array([x.month for x in tfa])
df['tfa_day'] = np.array([x.day for x in tfa])
df['tfa_wd'] = np.array([x.isoweekday() for x in tfa])#isoweekday 分成周几
df_tfa_wd = pd.get_dummies(df.tfa_wd,prefix='tfa_wd') # get_dummies is 'one hot encoding'
df = pd.concat((df,df_tfa_wd),axis = 1)
df.drop(['tfa_wd'],axis = 1,inplace=True)
df.head()

处理时间,把时间detetime标准化,提取出年月日,根据年月日分出是周几,进行one hot encoding编码

Y = 2000 #北半球,确定月份的四季
seasons = [(0, (date(Y, 1, 1), date(Y, 3, 20))),   #winter(1, (date(Y, 3, 21), date(Y, 6, 20))),  #spring(2, (date(Y, 6, 21), date(Y, 9, 22))),  #summer(3, (date(Y, 9, 23), date(Y, 12, 20))), #autumn(0, (date(Y, 12, 21), date(Y, 12, 31))),#winter]

把一年四季的四个季节进行划分

df['tfa_season'] = np.array([get_season(x) for x in tfa])
df_tfa_season = pd.get_dummies(df.tfa_season, prefix = 'tfa_season')
df = pd.concat((df,df_tfa_season),axis = 1)
df.drop(['tfa_season'],axis = 1,inplace=True)
df.head()

def get_season(dt):dt = dt.date()dt = dt.replace(year=Y)return next(season for season, (start, end) in seasons if start <= dt <=end)

写一个划分一年四季的函数,对这个四个季节进行one hot encoding编码

dac = pd.to_datetime(df.date_account_created)
df['dac_year'] = np.array([x.year for x in dac])
df['dac_month'] = np.array([x.month for x in dac])
df['dac_day'] = np.array([x.day for x in dac])
df['dac_wd'] = np.array([x.isoweekday() for x in dac])
df_dac_wd = pd.get_dummies(df.dac_wd, prefix='dac_wd')
df = pd.concat((df,df_dac_wd),axis = 1)
df.drop(['dac_wd'],axis = 1,inplace=True)

把df时间进行拆分,分析出是周几,再进行one hot encoding编码

df['dac_season'] = np.array([get_season(x) for x in dac])
df_dac_season = pd.get_dummies(df.dac_season, prefix='dac_season')
df = pd.concat((df,df_dac_season),axis = 1)
df.drop(['dac_season'],axis = 1,inplace=True)
df.head()

-----------------------------------------------------------------------------------

dt_span = dac.subtract(tfa).dt.days
plt.scatter(dt_span.value_counts().index.values,dt_span.value_counts().values)
<matplotlib.collections.PathCollection at 0x1a195697b8>

可以看出第一次注册时间和第一次激活时间的时间差

写一个函数,把小于-1天的为一天,小于30天大于-1天的为一个月,大于30天小于365天的为一年

为什么是-1可能是服务器更新把第一次注册时间放到下一天了,所以看到-1最频繁

对及其不频繁的进行归类

def get_span(dt):if dt == -1:return 'OneDay'elif (dt<30) & (dt>-1):return 'OneMonth'elif (dt>=30) & (dt<=365):return 'OneYear'else:return 'Other'
df['dt_span'] = np.array([get_span(x) for x in dt_span])
df_dt_span = pd.get_dummies(df.dt_span,prefix='dt_span')
df = pd.concat((df,df_dt_span),axis = 1)
df.drop(['dt_span'],axis = 1,inplace=True)
df.head()
把一天,一个月,其它,进行one hot encoding编码
-----------------------------------------------------------------------------------
df.drop(['date_account_created','timestamp_first_active'],axis = 1, inplace=True)

删除两个时间列,分别是注册时间和激活时间


下面处理年龄

av = df.age.values
av = np.where(np.logical_and(av<2000,av>1900),2018-av,av)
df['age'] = av
age = df.age
age.fillna(-1,inplace=True)
div = 15
def get_age(age):if age < 0:return 'NA'elif (age < div):return divelif (age <= div*2):return div*2elif (age <= div*3):return div*3elif (age <= div*4):return div*4elif (age <=div*5):return div*5elif (age <=110):return div*6else:return 'Unphysical'

对年龄段进行划分,我推理把小于2000大于1900岁的用户,我用2018(今年)减去用户的岁数,得到他现在的年龄,把一部分极值信息变成有用的信息

df['age'] = np.array([get_age(x) for x in age])
df_age = pd.get_dummies(df.age,prefix='age')
df_age.head()

对年龄段进行one hot encoding编码

df = pd.concat((df,df_age),axis = 1)
df.drop(['age'],axis = 1,inplace=True)
df.head()

把age列删除

-----------------------------------------------------------------------------------

处理其它列

feat_toOHE = ['gender','signup_method','signup_flow','language','affiliate_channel','affiliate_provider','first_affiliate_tracked','signup_app','first_device_type','first_browser']
for f in feat_toOHE:df_ohe = pd.get_dummies(df[f],prefix=f,dummy_na=True)df.drop([f],axis = 1,inplace=True)df = pd.concat((df,df_ohe),axis = 1)

把其它列进行one hot encoding编码

df.shape
(275547, 208)

现在有208列的特征

df_all = pd.merge(df,df_agg_sess,how='left')
df_all = df_all.drop(['id'],axis = 1)
af_all = df_all.fillna(-2)df_all['all_null'] = np.array([sum(r<0) for r in df_all.values])

把df和df_agg_sess表进行合并

删除id列,对空值用-2填充

添加一个all_null列,小于-2的都是为空值,计算空置的数量

-----------------------------------------------------------------------------------

Xtrain = df_all.iloc[:train_row,:]
Xtest = df_all.iloc[train_row:,:]le = LabelEncoder()
le.fit(labels)
ytrain = le.transform(labels)
print(train.shape[0] == Xtrain.shape[0])
print(test.shape[0] == Xtest.shape[0])
Xtrain.to_csv('/Users/qinpeng/Documents/airbnb/Airbnb_Xtrain_v2.csv')
Xtest.to_csv('/Users/qinpeng/Documents/airbnb/Airbnb_Xtest_v2.csv')
labels.tofile('/Users/qinpeng/Documents/airbnb/Airbnb_Ytrain_v2.csv',sep='\n',format='%s')
保存处理后的数据集








这篇关于分析Airbnb新用户订房地点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/287704

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

TP-Link PDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务

《TP-LinkPDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务》近期,路由器制造巨头普联(TP-Link)在用户群体中引发了一系列重要变动,上个月,公司发出了一则通知,明确要求所... 路由器厂商普联(TP-Link)上个月发布公告要求所有用户必须完成实名认证后才能继续使用普联提供的 D

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Oracle数据库如何切换登录用户(system和sys)

《Oracle数据库如何切换登录用户(system和sys)》文章介绍了如何使用SQL*Plus工具登录Oracle数据库的system用户,包括打开登录入口、输入用户名和口令、以及切换到sys用户的... 目录打开登录入口登录system用户总结打开登录入口win+R打开运行对话框,输php入:sqlp

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实