【机器学习合集】人脸表情分类任务Pytorch实现TensorBoardX的使用 ->(个人学习记录笔记)

本文主要是介绍【机器学习合集】人脸表情分类任务Pytorch实现TensorBoardX的使用 ->(个人学习记录笔记),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人脸表情分类任务

  • 注意:整个项目来自阿里云天池,下面是开发人员的联系方式,本人仅作为学习记录!!!
  • 该文章原因,学习该项目,完善注释内容,针对新版本的Pytorch进行部分代码调整
  • 本文章采用pytorch2.0.1版本,python3.10版本

源码链接

这是一个使用pytorch实现的简单的2分类任务
项目结构:- net.py: 网络定义脚本- train.py:模型训练脚本- inference.py:模型推理脚本- run_train.sh 训练可执行文件- run_inference.sh 推理可执行文件# Copyright 2019 longpeng2008. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# If you find any problem,please contact us longpeng2008to2012@gmail.com 

1. 网络结构

# coding:utf8import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np# 3层卷积神经网络simpleconv3定义
# 包括3个卷积层,3个BN层,3个ReLU激活层,3个全连接层class simpleconv3(nn.Module):# 初始化函数def __init__(self, nclass):# 继承父类super(simpleconv3, self).__init__()# 3通道 输入图片大小为3*48*48,输出特征图大小为12*23*23,卷积核大小为3*3,步长为2'''输出特征图大小 = [(输入大小 - 卷积核大小) / 步长] + 1输入大小是 48x48卷积核大小是 3x3步长是 2将这些值代入公式,您将得到输出特征图的大小:输出特征图大小 = [(48 - 3) / 2] + 1 = (45 / 2) + 1 = 22.5 + 1 = 23'''self.conv1 = nn.Conv2d(3, 12, 3, 2)# 批量标准化操作 12个特征通道self.bn1 = nn.BatchNorm2d(12)# 输入图片大小为12*23*23,输出特征图大小为24*11*11,卷积核大小为3*3,步长为2'''输出特征图大小 = [(输入大小 - 卷积核大小) / 步长] + 1输入大小是 23x23卷积核大小是 3x3步长是 2将这些值代入公式,您将得到输出特征图的大小:输出特征图大小 = [(23 - 3) / 2] + 1 = (20 / 2) + 1 = 10 + 1 = 11'''self.conv2 = nn.Conv2d(12, 24, 3, 2)# 批量标准化操作 24个特征通道self.bn2 = nn.BatchNorm2d(24)# 输入图片大小为24*11*11,输出特征图大小为48*5*5,卷积核大小为3*3,步长为2'''输出特征图大小 = [(输入大小 - 卷积核大小) / 步长] + 1输入大小是 11x11卷积核大小是 3x3步长是 2将这些值代入公式,您将得到输出特征图的大小:输出特征图大小 = [(11 - 3) / 2] + 1 = (8 / 2) + 1 = 4 + 1 = 5'''self.conv3 = nn.Conv2d(24, 48, 3, 2)# 批量标准化操作 48个特征通道self.bn3 = nn.BatchNorm2d(48)# 输入向量长为48*5*5=1200,输出向量长为1200 展平self.fc1 = nn.Linear(48 * 5 * 5, 1200)# 1200 -> 128self.fc2 = nn.Linear(1200, 128)  # 输入向量长为1200,输出向量长为128# 128 -> 类别数self.fc3 = nn.Linear(128, nclass)  # 输入向量长为128,输出向量长为nclass,等于类别数# 前向函数def forward(self, x):# relu函数,不需要进行实例化,直接进行调用# conv,fc层需要调用nn.Module进行实例化# 先卷积后标准化再激活x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = F.relu(self.bn3(self.conv3(x)))# 更改形状 改为1维x = x.view(-1, 48 * 5 * 5)# 全连接再激活x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return xif __name__ == '__main__':import torchx = torch.randn(1, 3, 48, 48)model = simpleconv3(2)y = model(x)print(model)'''simpleconv3((conv1): Conv2d(3, 12, kernel_size=(3, 3), stride=(2, 2))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 24, kernel_size=(3, 3), stride=(2, 2))(bn2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(24, 48, kernel_size=(3, 3), stride=(2, 2))(bn3): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=1200, out_features=1200, bias=True)(fc2): Linear(in_features=1200, out_features=128, bias=True)(fc3): Linear(in_features=128, out_features=2, bias=True))'''

2. 训练函数

部分代码内容与作者不同

  • scheduler.step()与optimizer.step()修改前后顺序
  • RandomSizedCrop改为RandomCrop
  • transforms.Scale修改为transforms.Resize
# coding:utf8
from __future__ import print_function, division
import os
import torch
import torch.nn as nn
import torch.optim as optim
# 使用tensorboardX进行可视化
from tensorboardX import SummaryWriter
from torch.optim import lr_scheduler
from torchvision import datasets, transformsfrom net import simpleconv3writer = SummaryWriter('logs')  # 创建一个SummaryWriter的示例,默认目录名字为runs# 训练主函数
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):"""训练模型Args:model: 模型criterion: loss函数optimizer: 优化器scheduler: 学习率调度器num_epochs: 训练轮次Returns:"""# 开始训练for epoch in range(num_epochs):# 打印训练轮次print(f'Epoch {epoch+1}/{num_epochs}')for phase in ['train', 'val']:if phase == 'train':# 设置为训练模式model.train(True)else:# 设置为验证模式model.train(False)# 损失变量running_loss = 0.0# 精度变量running_accs = 0.0number_batch = 0# 从dataloaders中获得数据for data in dataloaders[phase]:inputs, labels = dataif use_gpu:inputs = inputs.cuda()labels = labels.cuda()# 清空梯度optimizer.zero_grad()# 前向运行outputs = model(inputs)# 使用max()函数对输出值进行操作,得到预测值索引_, preds = torch.max(outputs.data, 1)# 计算损失loss = criterion(outputs, labels)if phase == 'train':# 误差反向传播loss.backward()# 参数更新optimizer.step()running_loss += loss.data.item()running_accs += torch.sum(preds == labels).item()number_batch += 1# 调整学习率scheduler.step()# 得到每一个epoch的平均损失与精度epoch_loss = running_loss / number_batchepoch_acc = running_accs / dataset_sizes[phase]# 收集精度和损失用于可视化if phase == 'train':writer.add_scalar('data/trainloss', epoch_loss, epoch)writer.add_scalar('data/trainacc', epoch_acc, epoch)else:writer.add_scalar('data/valloss', epoch_loss, epoch)writer.add_scalar('data/valacc', epoch_acc, epoch)print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))writer.close()return modelif __name__ == '__main__':# 图像统一缩放大小image_size = 60# 图像裁剪大小,即训练输入大小crop_size = 48# 分类类别数nclass = 2# 创建模型model = simpleconv3(nclass)# 数据目录data_dir = './data'# 模型缓存接口if not os.path.exists('models'):os.mkdir('models')# 检查GPU是否可用,如果是使用GPU,否使用CPUuse_gpu = torch.cuda.is_available()if use_gpu:model = model.cuda()print(model)# 创建数据预处理函数,训练预处理包括随机裁剪缩放、随机翻转、归一化,验证预处理包括中心裁剪,归一化data_transforms = {'train': transforms.Compose([transforms.RandomCrop(48),  # 随机大小、长宽比裁剪图片size=48 RandomSizedCrop改为RandomCroptransforms.RandomHorizontalFlip(),  # 随机水平翻转 默认概率p=0.5transforms.ToTensor(),  # 将原始的PILImage格式或者numpy.array格式的数据格式化为可被pytorch快速处理的张量类型transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])  # 数据标准化 要将图像三个通道的数据 整理到 [-1,1] 之间 ,可以加快模型的收敛]),'val': transforms.Compose([transforms.Resize(64),  # Scale用于调整图像的大小,现在采用transforms.Resize()代替transforms.CenterCrop(48),  # 从图像中心裁剪图片尺寸size=48transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),}# 使用torchvision的dataset ImageFolder接口读取数据image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}# 创建数据指针,设置batch大小,shuffle,多进程数量dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],batch_size=16,  # 每个小批次包含16个样本shuffle=True,   # 是否随机打乱数据num_workers=4)  # 加载数据的子进程数for x in ['train', 'val']}# 获得数据集大小dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}# 优化目标使用交叉熵,优化方法使用带动量项的SGD,学习率迭代策略为step,每隔100个epoch,变为原来的0.1倍criterion = nn.CrossEntropyLoss()# 优化器 传入权重阈值,学习率0.1 动量(momentum)是一个控制梯度下降方向的超参数。# 它有助于加速训练,特别是在存在平坦区域或局部极小值时。动量的值通常在0到1之间。较大的动量值会使参数更新更平滑。在这里,动量设置为0.9。optimizer_ft = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)'''lr_scheduler.StepLR 是PyTorch中的学习率调度器(learning rate scheduler),用于在训练神经网络时动态调整学习率。lr_scheduler.StepLR 允许您在训练的不同阶段逐步减小学习率,以帮助优化过程。optimizer_ft:这是您用于优化模型参数的优化器,通常是 optim.SGD 或其他PyTorch优化器的实例。学习率调度器将监控这个优化器的状态,并根据其规则更新学习率。step_size=100:这是学习率更新的周期,也称为学习率下降步数。在每个 step_size 个训练周期之后,学习率将减小。gamma=0.1:这是学习率减小的因子。在每个 step_size 个训练周期之后,学习率将乘以 gamma。这意味着学习率将以 gamma 的倍数逐步减小。'''exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=100, gamma=0.1)model = train_model(model=model,criterion=criterion,optimizer=optimizer_ft,scheduler=exp_lr_scheduler,num_epochs=10)torch.save(model.state_dict(), 'models/model.pt')

3. 预测

执行以下内容,或者自行安排数据集

## 使用方法 python3 inference.py 模型路径 图片路径
python3 inference.py models/model.pt data/train/0/1neutral.jpg
python3 inference.py models/model.pt data/train/1/1smile.jpg
# coding:utf8import sys
import numpy as np
import torch
from PIL import Image
from torchvision import transforms# 全局变量
# sys.argv[1] 权重文件
# sys.argv[2] 图像文件夹testsize = 48  # 测试图大小
from net import simpleconv3# 定义模型
net = simpleconv3(2)
# 设置推理模式,使得dropout和batchnorm等网络层在train和val模式间切换
net.eval()
# 停止autograd模块的工作,以起到加速和节省显存
torch.no_grad()# 载入模型权重
modelpath = sys.argv[1]
net.load_state_dict(torch.load(modelpath, map_location=lambda storage, loc: storage))# 定义预处理函数
data_transforms = transforms.Compose([transforms.Resize(48),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])# 读取3通道图片,并扩充为4通道tensor
imagepath = sys.argv[2]
image = Image.open(imagepath)
imgblob = data_transforms(image).unsqueeze(0)# 获得预测结果predict,得到预测的标签值label
predict = net(imgblob)
index = np.argmax(predict.detach().numpy())
# print(predict)
# print(index)if index == 0:print('the predict of ' + sys.argv[2] + ' is ' + str('none'))
else:print('the predict of ' + sys.argv[2] + ' is ' + str('smile'))

4. TensorBoardX的使用

TensorBoardX 是一个用于在 PyTorch 中可视化训练过程和结果的工具。它是 TensorBoard 的 Python 版本,用于创建交互式、实时的训练和评估图表。以下是一些使用 TensorBoardX 的一般步骤:

  1. 安装 TensorBoardX:首先,您需要安装 TensorBoardX 库。您可以使用以下命令安装它:

    pip install tensorboardX
    
  2. 导入库:在您的 PyTorch 代码中,导入 TensorBoardX 库:

    from tensorboardX import SummaryWriter
    
  3. 创建 SummaryWriter:创建一个 SummaryWriter 对象,以将日志数据写入 TensorBoard 日志目录。

    writer = SummaryWriter()
    
  4. 记录数据:在训练循环中,使用 writer.add_* 方法来记录各种数据,例如标量、图像、直方图等。以下是一些示例:

    • 记录标量数据:

      writer.add_scalar('loss', loss, global_step)
      
    • 记录图像数据:

      writer.add_image('image', image, global_step)
      
    • 记录直方图数据:

      writer.add_histogram('weights', model.conv1.weight, global_step)
      
    • 记录文本数据:

      writer.add_text('description', 'This is a description.', global_step)
      
  5. 启动 TensorBoard 服务器:在命令行中,使用以下命令启动 TensorBoard 服务器:

    tensorboard --logdir=/path/to/log/directory
    

    其中 /path/to/log/directory 是存储 TensorBoardX 日志的目录。

  6. 查看可视化结果:在浏览器中打开 TensorBoard 的 Web 界面,通常位于 http://localhost:6006,您可以在该界面上查看可视化结果。

请注意,您可以根据需要记录不同类型的数据,并根据训练过程的不同阶段定期记录数据。TensorBoardX 提供了丰富的可视化工具,以帮助您监视和分析模型的训练过程。

确保在训练循环中适时记录数据,并使用 TensorBoardX 查看结果,以更好地理解和改进您的深度学习模型。


这是 TensorBoard 启动时的一般信息,表明TensorBoard运行在本地主机(localhost)。如果您想使 TensorBoard 可以在网络上访问,可以采取以下几种方法:

  1. 使用代理:您可以使用代理服务器来将 TensorBoard 的端口暴露到网络上。这通常需要在代理服务器上进行一些配置,以便外部用户可以访问 TensorBoard。代理服务器可以是诸如 Nginx 或 Apache 之类的 Web 服务器。

  2. 使用 --bind_all 参数:在启动 TensorBoard 时,您可以使用 --bind_all 参数,以将 TensorBoard 绑定到所有网络接口。这样,TensorBoard 将可以在本地网络上的任何 IP 地址上访问,而不仅仅是本地主机。例如:

    tensorboard --logdir=/path/to/log/directory --bind_all
    
  3. 使用 --host 参数:您还可以使用 --host 参数来指定 TensorBoard 的主机名(hostname),以使其在指定的主机上可用。例如:

    tensorboard --logdir=/path/to/log/directory --host=0.0.0.0
    

    这将允许 TensorBoard 在所有网络接口上运行,从而在网络上的任何 IP 地址上访问。

请根据您的需求和网络设置选择适当的方法。如果只需要在本地访问 TensorBoard,无需进行任何更改。如果需要在网络上访问,可以使用上述选项之一。不过,请注意,为了安全起见,最好将 TensorBoard 限制在受信任的网络上,或者使用身份验证和授权来保护访问。


效果展示
在这里插入图片描述

这篇关于【机器学习合集】人脸表情分类任务Pytorch实现TensorBoardX的使用 ->(个人学习记录笔记)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/286029

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本