Python科学计算包MNE——头模型和前向计算

2023-10-25 17:59

本文主要是介绍Python科学计算包MNE——头模型和前向计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 一. Freesurfer安装及配置
    • 1.1 Freesurfer下载安装
    • 1.2 Freesurfer功能测试
  • 二. 计算和可视化BEM表面
    • 2.1 创建BEM的surfer
  • 三. 可视化配准
  • 四. 计算源空间
    • 4.1 源空间定义
    • 4.2 设置源空间
  • 五. 计算正向解

前言

  1. mne是一款用于处理神经信号的Python 科学计算包,其中所有的示例数据集都是来自同一个机构中来自 60 通道电极帽的 EEG 数据与 MEG 同时获取的,因此实际脑电帽采集的数据由于电极方案和通道数与示例数据集不同,需要在示例代码的基础上做适配。
  2. 其中示例数据集的采集实验为以下设置:
    在这个实验中,棋盘图案呈现给受试者的左右视野,左耳或右耳穿插着音调。刺激之间的间隔为 750 毫秒。视野中央时不时出现一张笑脸。受试者被要求在面部出现后尽快用右手食指按下一个键。
  3. 数据集主要包括两个目录: MEG/sample(MEG/EEG 数据)和subjects/sample(MRI 重建)。
    数据格式及其说明:
文件内容
sample/audvis_raw.fif原始 MEG/EEG 数据
audvis.ave离线平均的模板脚本
auvis.cov用于计算噪声协方差矩阵的模板脚本
文件内容
bem正演建模数据目录
bem/watershed使用分水岭算法计算的 BEM 表面分割数据
bem/inner_skull.surfBEM 的颅骨内表面
bem/outer_skull.surfBEM 的外颅骨表面
bem/outer_skin.surfBEM 的皮肤表面
sample-head.fif用于 mne_analyze 可视化的 fif 格式的皮肤表面
surf表面重建
mri/T1可视化中使用的 T1 加权 MRI 数据

示例数据集中已经完成了以下预处理步骤:

  1. 使用 FreeSurfer 软件计算了 MRI 表面重建。
  2. BEM 表面已使用分水岭算法创建,请参阅使用分水岭算法。
  3. fsaverage是基于 40 个真实大脑 MRI 扫描组合的模板大脑。主题fsaverage 文件夹包含正常主题重建会产生的所有文件。最常见的用途之一fsaverage是作为皮质变形/源估计转换的目标空间。换句话说,通常将每个个体受试者的大脑活动估计值变形到fsaverage大脑上,以便可以进行组级统计比较。

环境:
Ubuntu 20.04
AMD5800 8core 16Thread
NVIDIA RTX 3090 24GB
RAM 64GB

一. Freesurfer安装及配置

Freesurfer 是1999年在美国麻省总医院开发的大脑分析与可视化软件。
开发初衷是重建大脑皮层表面,主要用于结构像,功能像和弥散像等数据的分析和可视化。其只能运行在Linux和MAC os上,Windows系统中需要使用虚拟机。

1.1 Freesurfer下载安装

  1. ubuntu用户首先到Freesurfer官网下载deb安装包:
    https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/7.3.2/freesurfer_ubuntu20-7.3.2_amd64.deb
    执行以下命令进行安装:
sudo apt update
#首先安装所需要的依赖
sudo apt-get -f install
sudo dpkg -i freesurfer_ubuntu20-7.3.2_amd64.deb

如果产生如下图依赖错误,需要首先卸载之前安装的包,然后重新安装。

![在这里插入图片描述](https://img-blog.csdnimg.cn/063e00fb844549b5881d447cb34fc63c.png #pic_center)

sudo apt remove ./free*

安装成功后:
在这里插入图片描述
deb模式安装将默认安装在/usr/local/freesurfer 目录下。

  1. 也可以下载压缩包直接离线解压安装:
    https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/7.3.2/freesurfer-linux-ubuntu20_amd64-7.3.2.tar.gz
tar -zxv -f freesurfer-linux-ubuntu20_amd64-7.3.2.tar.gz
sudo apt-get install tcsh
#根据解压的路径设置文件夹权限
sudo chmod -R 777 ./freesurfer

3.通过以上两种的任意一种安装方式安装freesurfer后,需要添加环境变量,这里需要修改为自己电脑freesurfer解压的路径:

使用 gedit ~/.bashrc 打开系统环境文件,在~/.bashrc文件中添加如下两句:

export FREESURFER_HOME=/home/geek/freesurfer #freesurfer解压路径
source $FREESURFER_HOME/SetUpFreeSurfer.sh
export SUBJECTS_DIR=/home/geek/Brain/MRI #处理结果保存路径
source ~/.bashrc #环境修改立即生效

1.2 Freesurfer功能测试

安装完毕以后要想正常使用,还需要到官网获取license证书,具体方式如下:

到官网注册邮箱:
https://surfer.nmr.mgh.harvard.edu/registration.html
注册完毕后查看邮箱下载license.txt:
在这里插入图片描述
然后将下载下来的license.txt文件复制到usr/local/freesurfer中:

sudo cp ./license.txt usr/local/freesurfer

执行一个demo查看重建结果:

my_subject=sample
my_NIfTI=/home/geek/Brain/MRI/NIfTI.nii.gz
recon-all -i $my_NIfTI -s $my_subject -all

如果运行完毕后没有任何报错,正常输出重建信息,则表明重建成功:
在这里插入图片描述
ps: 解剖重建可能需要几个小时,即使在快速计算机上也是如此。重建成功后的终端信息如下:
在这里插入图片描述

二. 计算和可视化BEM表面

BEM全称是Boundary Element Model。BEM由定义头部组织隔室的表面组成,如内颅骨,外颅骨和外头皮。

2.1 创建BEM的surfer

安装mne后,可以直接使用mne自带的分水岭算法创建BEM表面:

mne watershed_bem -s sample

创建结束后的输出如下:
在这里插入图片描述
接下来对创建后的BEM表面进行测试:

import mne
subject = 'sample'
plot_bem_kwargs = dict(subject=subject, subjects_dir="/home/geek/Brain/MRI",brain_surfaces='white', orientation='coronal',slices=[50, 100, 150, 200])
mne.viz.plot_bem(**plot_bem_kwargs)

三. 可视化配准

配准是允许将头部和传感器定位在公共坐标系中的操作。在 MNE 软件中,对齐头部和传感器的转换存储在所谓的trans 文件中。

  1. 首先使用mne中的coregister的GUI工具进行手工配准,先选择MRI的subject目录,然后进行选择信息源文件进行加载,我这里以sample_audvis_filt-0-40_raw.fif 文件为例,进行加载,得到头模型。然后在右侧工具栏进行FIt fiducialsFit ICP 的拟合。最后点击save 选择保存的trans.fif文件路径即可。
    在这里插入图片描述
  2. 然后加载生成的trans.fif文件,绘制配准后的结果,绘制代码为
trans = '/home/geek/Brain/MRI/trans.fif'
info = mne.io.read_info(raw_fname)
# Here we look at the dense head, which isn't used for BEM computations but
# is useful for coregistration.
mne.viz.plot_alignment(info, trans, subject=subject, dig=True,meg=['helmet', 'sensors'], subjects_dir=subjects_dir,surfaces='head-dense')

绘制结果为:
在这里插入图片描述
输出信息为:

Read a total of 3 projection items:PCA-v1 (1 x 102)  idlePCA-v2 (1 x 102)  idlePCA-v3 (1 x 102)  idle
Using lh.seghead for head surface.
Getting helmet for system 306m
Channel types::	grad: 203, mag: 102, eeg: 59
<mne.viz.backends._pyvista.PyVistaFigure at 0x1460e0333670

四. 计算源空间

4.1 源空间定义

源空间定义候选源位置的位置和方向。有两种类型的源空间:

  1. 当候选者被限制在一个表面时,基于表面的源空间。
  2. 体积或离散源空间,当候选者是离散的、任意位于表面边界的源点时。

基于表面的源空间src包含两部分,一部分用于左半球(258 个位置),另一部分用于右半球(258 个位置)。源可以在紫色的 BEM 表面上可视化。
在这里插入图片描述
计算以 (0.0, 0.0, 40.0) mm 为中心的半径为 90mm 的球体内的候选偶极子网格定义的基于体积的源空间:

sphere = (0.0, 0.0, 0.04, 0.09)
vol_src = mne.setup_volume_source_space(subject, subjects_dir=subjects_dir, sphere=sphere, sphere_units='m',add_interpolator=False)  # just for speed!
print(vol_src)mne.viz.plot_bem(src=vol_src, **plot_bem_kwargs)

在这里插入图片描述

4.2 设置源空间

这个阶段包括以下内容:

  1. 在白质表面创建合适的抽取偶极子网格。
  2. 创建 fif 格式的源空间文件。

计算基于大脑内部候选偶极子网格定义的基于体积的源空间(需要BEM表面):

surface = "/home/geek/Brain/MRI/sample/bem/inner_skull.surf"
vol_src = mne.setup_volume_source_space(subject, subjects_dir=subjects_dir, surface=surface,add_interpolator=False)  # Just for speed!
print(vol_src)
mne.viz.plot_bem(src=vol_src, **plot_bem_kwargs)

在这里插入图片描述
3D 方式查看所有源:
在这里插入图片描述
请注意,BEM不涉及对 trans 文件的任何使用。BEM 仅取决于头部几何形状和电导率。因此它独立于 MEG 数据和头部位置。

五. 计算正向解

现在让我们计算正向运算符,通常称为增益或前场矩阵。
在设置 MRI-MEG/EEG 对齐后,正向解,即由于位于皮层上的偶极源,测量传感器和电极处的磁场和电势,可以通过以下方式计算

fwd = mne.make_forward_solution(raw_fname, trans=trans, src=src, bem=bem,meg=True, eeg=False, mindist=5.0, n_jobs=None,verbose=True)
mne.write_forward_solution("/home/geek/Brain/MRI/fwd.fif",fwd)
print(fwd)

这篇关于Python科学计算包MNE——头模型和前向计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/284254

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e