Python科学计算包MNE——头模型和前向计算

2023-10-25 17:59

本文主要是介绍Python科学计算包MNE——头模型和前向计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 一. Freesurfer安装及配置
    • 1.1 Freesurfer下载安装
    • 1.2 Freesurfer功能测试
  • 二. 计算和可视化BEM表面
    • 2.1 创建BEM的surfer
  • 三. 可视化配准
  • 四. 计算源空间
    • 4.1 源空间定义
    • 4.2 设置源空间
  • 五. 计算正向解

前言

  1. mne是一款用于处理神经信号的Python 科学计算包,其中所有的示例数据集都是来自同一个机构中来自 60 通道电极帽的 EEG 数据与 MEG 同时获取的,因此实际脑电帽采集的数据由于电极方案和通道数与示例数据集不同,需要在示例代码的基础上做适配。
  2. 其中示例数据集的采集实验为以下设置:
    在这个实验中,棋盘图案呈现给受试者的左右视野,左耳或右耳穿插着音调。刺激之间的间隔为 750 毫秒。视野中央时不时出现一张笑脸。受试者被要求在面部出现后尽快用右手食指按下一个键。
  3. 数据集主要包括两个目录: MEG/sample(MEG/EEG 数据)和subjects/sample(MRI 重建)。
    数据格式及其说明:
文件内容
sample/audvis_raw.fif原始 MEG/EEG 数据
audvis.ave离线平均的模板脚本
auvis.cov用于计算噪声协方差矩阵的模板脚本
文件内容
bem正演建模数据目录
bem/watershed使用分水岭算法计算的 BEM 表面分割数据
bem/inner_skull.surfBEM 的颅骨内表面
bem/outer_skull.surfBEM 的外颅骨表面
bem/outer_skin.surfBEM 的皮肤表面
sample-head.fif用于 mne_analyze 可视化的 fif 格式的皮肤表面
surf表面重建
mri/T1可视化中使用的 T1 加权 MRI 数据

示例数据集中已经完成了以下预处理步骤:

  1. 使用 FreeSurfer 软件计算了 MRI 表面重建。
  2. BEM 表面已使用分水岭算法创建,请参阅使用分水岭算法。
  3. fsaverage是基于 40 个真实大脑 MRI 扫描组合的模板大脑。主题fsaverage 文件夹包含正常主题重建会产生的所有文件。最常见的用途之一fsaverage是作为皮质变形/源估计转换的目标空间。换句话说,通常将每个个体受试者的大脑活动估计值变形到fsaverage大脑上,以便可以进行组级统计比较。

环境:
Ubuntu 20.04
AMD5800 8core 16Thread
NVIDIA RTX 3090 24GB
RAM 64GB

一. Freesurfer安装及配置

Freesurfer 是1999年在美国麻省总医院开发的大脑分析与可视化软件。
开发初衷是重建大脑皮层表面,主要用于结构像,功能像和弥散像等数据的分析和可视化。其只能运行在Linux和MAC os上,Windows系统中需要使用虚拟机。

1.1 Freesurfer下载安装

  1. ubuntu用户首先到Freesurfer官网下载deb安装包:
    https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/7.3.2/freesurfer_ubuntu20-7.3.2_amd64.deb
    执行以下命令进行安装:
sudo apt update
#首先安装所需要的依赖
sudo apt-get -f install
sudo dpkg -i freesurfer_ubuntu20-7.3.2_amd64.deb

如果产生如下图依赖错误,需要首先卸载之前安装的包,然后重新安装。

![在这里插入图片描述](https://img-blog.csdnimg.cn/063e00fb844549b5881d447cb34fc63c.png #pic_center)

sudo apt remove ./free*

安装成功后:
在这里插入图片描述
deb模式安装将默认安装在/usr/local/freesurfer 目录下。

  1. 也可以下载压缩包直接离线解压安装:
    https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/7.3.2/freesurfer-linux-ubuntu20_amd64-7.3.2.tar.gz
tar -zxv -f freesurfer-linux-ubuntu20_amd64-7.3.2.tar.gz
sudo apt-get install tcsh
#根据解压的路径设置文件夹权限
sudo chmod -R 777 ./freesurfer

3.通过以上两种的任意一种安装方式安装freesurfer后,需要添加环境变量,这里需要修改为自己电脑freesurfer解压的路径:

使用 gedit ~/.bashrc 打开系统环境文件,在~/.bashrc文件中添加如下两句:

export FREESURFER_HOME=/home/geek/freesurfer #freesurfer解压路径
source $FREESURFER_HOME/SetUpFreeSurfer.sh
export SUBJECTS_DIR=/home/geek/Brain/MRI #处理结果保存路径
source ~/.bashrc #环境修改立即生效

1.2 Freesurfer功能测试

安装完毕以后要想正常使用,还需要到官网获取license证书,具体方式如下:

到官网注册邮箱:
https://surfer.nmr.mgh.harvard.edu/registration.html
注册完毕后查看邮箱下载license.txt:
在这里插入图片描述
然后将下载下来的license.txt文件复制到usr/local/freesurfer中:

sudo cp ./license.txt usr/local/freesurfer

执行一个demo查看重建结果:

my_subject=sample
my_NIfTI=/home/geek/Brain/MRI/NIfTI.nii.gz
recon-all -i $my_NIfTI -s $my_subject -all

如果运行完毕后没有任何报错,正常输出重建信息,则表明重建成功:
在这里插入图片描述
ps: 解剖重建可能需要几个小时,即使在快速计算机上也是如此。重建成功后的终端信息如下:
在这里插入图片描述

二. 计算和可视化BEM表面

BEM全称是Boundary Element Model。BEM由定义头部组织隔室的表面组成,如内颅骨,外颅骨和外头皮。

2.1 创建BEM的surfer

安装mne后,可以直接使用mne自带的分水岭算法创建BEM表面:

mne watershed_bem -s sample

创建结束后的输出如下:
在这里插入图片描述
接下来对创建后的BEM表面进行测试:

import mne
subject = 'sample'
plot_bem_kwargs = dict(subject=subject, subjects_dir="/home/geek/Brain/MRI",brain_surfaces='white', orientation='coronal',slices=[50, 100, 150, 200])
mne.viz.plot_bem(**plot_bem_kwargs)

三. 可视化配准

配准是允许将头部和传感器定位在公共坐标系中的操作。在 MNE 软件中,对齐头部和传感器的转换存储在所谓的trans 文件中。

  1. 首先使用mne中的coregister的GUI工具进行手工配准,先选择MRI的subject目录,然后进行选择信息源文件进行加载,我这里以sample_audvis_filt-0-40_raw.fif 文件为例,进行加载,得到头模型。然后在右侧工具栏进行FIt fiducialsFit ICP 的拟合。最后点击save 选择保存的trans.fif文件路径即可。
    在这里插入图片描述
  2. 然后加载生成的trans.fif文件,绘制配准后的结果,绘制代码为
trans = '/home/geek/Brain/MRI/trans.fif'
info = mne.io.read_info(raw_fname)
# Here we look at the dense head, which isn't used for BEM computations but
# is useful for coregistration.
mne.viz.plot_alignment(info, trans, subject=subject, dig=True,meg=['helmet', 'sensors'], subjects_dir=subjects_dir,surfaces='head-dense')

绘制结果为:
在这里插入图片描述
输出信息为:

Read a total of 3 projection items:PCA-v1 (1 x 102)  idlePCA-v2 (1 x 102)  idlePCA-v3 (1 x 102)  idle
Using lh.seghead for head surface.
Getting helmet for system 306m
Channel types::	grad: 203, mag: 102, eeg: 59
<mne.viz.backends._pyvista.PyVistaFigure at 0x1460e0333670

四. 计算源空间

4.1 源空间定义

源空间定义候选源位置的位置和方向。有两种类型的源空间:

  1. 当候选者被限制在一个表面时,基于表面的源空间。
  2. 体积或离散源空间,当候选者是离散的、任意位于表面边界的源点时。

基于表面的源空间src包含两部分,一部分用于左半球(258 个位置),另一部分用于右半球(258 个位置)。源可以在紫色的 BEM 表面上可视化。
在这里插入图片描述
计算以 (0.0, 0.0, 40.0) mm 为中心的半径为 90mm 的球体内的候选偶极子网格定义的基于体积的源空间:

sphere = (0.0, 0.0, 0.04, 0.09)
vol_src = mne.setup_volume_source_space(subject, subjects_dir=subjects_dir, sphere=sphere, sphere_units='m',add_interpolator=False)  # just for speed!
print(vol_src)mne.viz.plot_bem(src=vol_src, **plot_bem_kwargs)

在这里插入图片描述

4.2 设置源空间

这个阶段包括以下内容:

  1. 在白质表面创建合适的抽取偶极子网格。
  2. 创建 fif 格式的源空间文件。

计算基于大脑内部候选偶极子网格定义的基于体积的源空间(需要BEM表面):

surface = "/home/geek/Brain/MRI/sample/bem/inner_skull.surf"
vol_src = mne.setup_volume_source_space(subject, subjects_dir=subjects_dir, surface=surface,add_interpolator=False)  # Just for speed!
print(vol_src)
mne.viz.plot_bem(src=vol_src, **plot_bem_kwargs)

在这里插入图片描述
3D 方式查看所有源:
在这里插入图片描述
请注意,BEM不涉及对 trans 文件的任何使用。BEM 仅取决于头部几何形状和电导率。因此它独立于 MEG 数据和头部位置。

五. 计算正向解

现在让我们计算正向运算符,通常称为增益或前场矩阵。
在设置 MRI-MEG/EEG 对齐后,正向解,即由于位于皮层上的偶极源,测量传感器和电极处的磁场和电势,可以通过以下方式计算

fwd = mne.make_forward_solution(raw_fname, trans=trans, src=src, bem=bem,meg=True, eeg=False, mindist=5.0, n_jobs=None,verbose=True)
mne.write_forward_solution("/home/geek/Brain/MRI/fwd.fif",fwd)
print(fwd)

这篇关于Python科学计算包MNE——头模型和前向计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/284254

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言