Python科学计算包MNE——头模型和前向计算

2023-10-25 17:59

本文主要是介绍Python科学计算包MNE——头模型和前向计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 一. Freesurfer安装及配置
    • 1.1 Freesurfer下载安装
    • 1.2 Freesurfer功能测试
  • 二. 计算和可视化BEM表面
    • 2.1 创建BEM的surfer
  • 三. 可视化配准
  • 四. 计算源空间
    • 4.1 源空间定义
    • 4.2 设置源空间
  • 五. 计算正向解

前言

  1. mne是一款用于处理神经信号的Python 科学计算包,其中所有的示例数据集都是来自同一个机构中来自 60 通道电极帽的 EEG 数据与 MEG 同时获取的,因此实际脑电帽采集的数据由于电极方案和通道数与示例数据集不同,需要在示例代码的基础上做适配。
  2. 其中示例数据集的采集实验为以下设置:
    在这个实验中,棋盘图案呈现给受试者的左右视野,左耳或右耳穿插着音调。刺激之间的间隔为 750 毫秒。视野中央时不时出现一张笑脸。受试者被要求在面部出现后尽快用右手食指按下一个键。
  3. 数据集主要包括两个目录: MEG/sample(MEG/EEG 数据)和subjects/sample(MRI 重建)。
    数据格式及其说明:
文件内容
sample/audvis_raw.fif原始 MEG/EEG 数据
audvis.ave离线平均的模板脚本
auvis.cov用于计算噪声协方差矩阵的模板脚本
文件内容
bem正演建模数据目录
bem/watershed使用分水岭算法计算的 BEM 表面分割数据
bem/inner_skull.surfBEM 的颅骨内表面
bem/outer_skull.surfBEM 的外颅骨表面
bem/outer_skin.surfBEM 的皮肤表面
sample-head.fif用于 mne_analyze 可视化的 fif 格式的皮肤表面
surf表面重建
mri/T1可视化中使用的 T1 加权 MRI 数据

示例数据集中已经完成了以下预处理步骤:

  1. 使用 FreeSurfer 软件计算了 MRI 表面重建。
  2. BEM 表面已使用分水岭算法创建,请参阅使用分水岭算法。
  3. fsaverage是基于 40 个真实大脑 MRI 扫描组合的模板大脑。主题fsaverage 文件夹包含正常主题重建会产生的所有文件。最常见的用途之一fsaverage是作为皮质变形/源估计转换的目标空间。换句话说,通常将每个个体受试者的大脑活动估计值变形到fsaverage大脑上,以便可以进行组级统计比较。

环境:
Ubuntu 20.04
AMD5800 8core 16Thread
NVIDIA RTX 3090 24GB
RAM 64GB

一. Freesurfer安装及配置

Freesurfer 是1999年在美国麻省总医院开发的大脑分析与可视化软件。
开发初衷是重建大脑皮层表面,主要用于结构像,功能像和弥散像等数据的分析和可视化。其只能运行在Linux和MAC os上,Windows系统中需要使用虚拟机。

1.1 Freesurfer下载安装

  1. ubuntu用户首先到Freesurfer官网下载deb安装包:
    https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/7.3.2/freesurfer_ubuntu20-7.3.2_amd64.deb
    执行以下命令进行安装:
sudo apt update
#首先安装所需要的依赖
sudo apt-get -f install
sudo dpkg -i freesurfer_ubuntu20-7.3.2_amd64.deb

如果产生如下图依赖错误,需要首先卸载之前安装的包,然后重新安装。

![在这里插入图片描述](https://img-blog.csdnimg.cn/063e00fb844549b5881d447cb34fc63c.png #pic_center)

sudo apt remove ./free*

安装成功后:
在这里插入图片描述
deb模式安装将默认安装在/usr/local/freesurfer 目录下。

  1. 也可以下载压缩包直接离线解压安装:
    https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/7.3.2/freesurfer-linux-ubuntu20_amd64-7.3.2.tar.gz
tar -zxv -f freesurfer-linux-ubuntu20_amd64-7.3.2.tar.gz
sudo apt-get install tcsh
#根据解压的路径设置文件夹权限
sudo chmod -R 777 ./freesurfer

3.通过以上两种的任意一种安装方式安装freesurfer后,需要添加环境变量,这里需要修改为自己电脑freesurfer解压的路径:

使用 gedit ~/.bashrc 打开系统环境文件,在~/.bashrc文件中添加如下两句:

export FREESURFER_HOME=/home/geek/freesurfer #freesurfer解压路径
source $FREESURFER_HOME/SetUpFreeSurfer.sh
export SUBJECTS_DIR=/home/geek/Brain/MRI #处理结果保存路径
source ~/.bashrc #环境修改立即生效

1.2 Freesurfer功能测试

安装完毕以后要想正常使用,还需要到官网获取license证书,具体方式如下:

到官网注册邮箱:
https://surfer.nmr.mgh.harvard.edu/registration.html
注册完毕后查看邮箱下载license.txt:
在这里插入图片描述
然后将下载下来的license.txt文件复制到usr/local/freesurfer中:

sudo cp ./license.txt usr/local/freesurfer

执行一个demo查看重建结果:

my_subject=sample
my_NIfTI=/home/geek/Brain/MRI/NIfTI.nii.gz
recon-all -i $my_NIfTI -s $my_subject -all

如果运行完毕后没有任何报错,正常输出重建信息,则表明重建成功:
在这里插入图片描述
ps: 解剖重建可能需要几个小时,即使在快速计算机上也是如此。重建成功后的终端信息如下:
在这里插入图片描述

二. 计算和可视化BEM表面

BEM全称是Boundary Element Model。BEM由定义头部组织隔室的表面组成,如内颅骨,外颅骨和外头皮。

2.1 创建BEM的surfer

安装mne后,可以直接使用mne自带的分水岭算法创建BEM表面:

mne watershed_bem -s sample

创建结束后的输出如下:
在这里插入图片描述
接下来对创建后的BEM表面进行测试:

import mne
subject = 'sample'
plot_bem_kwargs = dict(subject=subject, subjects_dir="/home/geek/Brain/MRI",brain_surfaces='white', orientation='coronal',slices=[50, 100, 150, 200])
mne.viz.plot_bem(**plot_bem_kwargs)

三. 可视化配准

配准是允许将头部和传感器定位在公共坐标系中的操作。在 MNE 软件中,对齐头部和传感器的转换存储在所谓的trans 文件中。

  1. 首先使用mne中的coregister的GUI工具进行手工配准,先选择MRI的subject目录,然后进行选择信息源文件进行加载,我这里以sample_audvis_filt-0-40_raw.fif 文件为例,进行加载,得到头模型。然后在右侧工具栏进行FIt fiducialsFit ICP 的拟合。最后点击save 选择保存的trans.fif文件路径即可。
    在这里插入图片描述
  2. 然后加载生成的trans.fif文件,绘制配准后的结果,绘制代码为
trans = '/home/geek/Brain/MRI/trans.fif'
info = mne.io.read_info(raw_fname)
# Here we look at the dense head, which isn't used for BEM computations but
# is useful for coregistration.
mne.viz.plot_alignment(info, trans, subject=subject, dig=True,meg=['helmet', 'sensors'], subjects_dir=subjects_dir,surfaces='head-dense')

绘制结果为:
在这里插入图片描述
输出信息为:

Read a total of 3 projection items:PCA-v1 (1 x 102)  idlePCA-v2 (1 x 102)  idlePCA-v3 (1 x 102)  idle
Using lh.seghead for head surface.
Getting helmet for system 306m
Channel types::	grad: 203, mag: 102, eeg: 59
<mne.viz.backends._pyvista.PyVistaFigure at 0x1460e0333670

四. 计算源空间

4.1 源空间定义

源空间定义候选源位置的位置和方向。有两种类型的源空间:

  1. 当候选者被限制在一个表面时,基于表面的源空间。
  2. 体积或离散源空间,当候选者是离散的、任意位于表面边界的源点时。

基于表面的源空间src包含两部分,一部分用于左半球(258 个位置),另一部分用于右半球(258 个位置)。源可以在紫色的 BEM 表面上可视化。
在这里插入图片描述
计算以 (0.0, 0.0, 40.0) mm 为中心的半径为 90mm 的球体内的候选偶极子网格定义的基于体积的源空间:

sphere = (0.0, 0.0, 0.04, 0.09)
vol_src = mne.setup_volume_source_space(subject, subjects_dir=subjects_dir, sphere=sphere, sphere_units='m',add_interpolator=False)  # just for speed!
print(vol_src)mne.viz.plot_bem(src=vol_src, **plot_bem_kwargs)

在这里插入图片描述

4.2 设置源空间

这个阶段包括以下内容:

  1. 在白质表面创建合适的抽取偶极子网格。
  2. 创建 fif 格式的源空间文件。

计算基于大脑内部候选偶极子网格定义的基于体积的源空间(需要BEM表面):

surface = "/home/geek/Brain/MRI/sample/bem/inner_skull.surf"
vol_src = mne.setup_volume_source_space(subject, subjects_dir=subjects_dir, surface=surface,add_interpolator=False)  # Just for speed!
print(vol_src)
mne.viz.plot_bem(src=vol_src, **plot_bem_kwargs)

在这里插入图片描述
3D 方式查看所有源:
在这里插入图片描述
请注意,BEM不涉及对 trans 文件的任何使用。BEM 仅取决于头部几何形状和电导率。因此它独立于 MEG 数据和头部位置。

五. 计算正向解

现在让我们计算正向运算符,通常称为增益或前场矩阵。
在设置 MRI-MEG/EEG 对齐后,正向解,即由于位于皮层上的偶极源,测量传感器和电极处的磁场和电势,可以通过以下方式计算

fwd = mne.make_forward_solution(raw_fname, trans=trans, src=src, bem=bem,meg=True, eeg=False, mindist=5.0, n_jobs=None,verbose=True)
mne.write_forward_solution("/home/geek/Brain/MRI/fwd.fif",fwd)
print(fwd)

这篇关于Python科学计算包MNE——头模型和前向计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/284254

相关文章

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码