(三)库存超卖案例实战——使用redis分布式锁解决“超卖”问题

2023-10-25 16:53

本文主要是介绍(三)库存超卖案例实战——使用redis分布式锁解决“超卖”问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在上一节内容中我们介绍了如何使用mysql数据库的传统锁(行锁、乐观锁、悲观锁)来解决并发访问导致的“超卖问题”。虽然mysql的传统锁能够很好的解决并发访问的问题,但是从性能上来讲,mysql的表现似乎并不那么优秀,而且会受制于单点故障。本节内容我们介绍一种性能更加优良的解决方案,使用内存数据库redis实现分布式锁从而控制并发访问导致的“超卖”问题。关于redis环境的搭建这里不做介绍,可查看作者往期博客内容。

正文

  • 在项目中添加redis的依赖和配置信息

- pom依赖配置

<!--        数据库连接池工具包-->
<dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId>
</dependency><!--redis启动器-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

- application.yml配置

spring:application:name: ht-atp-platdatasource:driver-class-name: com.mysql.cj.jdbc.Driverurl: jdbc:mysql://192.168.110.88:3306/ht-atp?characterEncoding=utf-8&serverTimezone=GMT%2B8&useAffectedRows=true&nullCatalogMeansCurrent=trueusername: rootpassword: rootprofiles:active: dev# redis配置redis:host: 192.168.110.88lettuce:pool:# 连接池最大连接数(使用负值表示没有限制) 默认为8max-active: 8# 连接池中的最小空闲连接 默认为 0min-idle: 1# 连接池最大阻塞等待时间(使用负值表示没有限制) 默认为-1max-wait: 1000# 连接池中的最大空闲连接 默认为8max-idle: 8

- redis序列化配置

package com.ht.atp.plat.config;import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.JsonTypeInfo;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.jsontype.impl.LaissezFaireSubTypeValidator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;@Configuration
public class RedisConfig {/*** @param factory* @return*/@Beanpublic RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {// 缓存序列化配置,避免存储乱码RedisTemplate<String, Object> template = new RedisTemplate<>();template.setConnectionFactory(factory);Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);ObjectMapper objectMapper = new ObjectMapper();objectMapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);objectMapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance,ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);jackson2JsonRedisSerializer.setObjectMapper(objectMapper);StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();// key采用String的序列化方式template.setKeySerializer(stringRedisSerializer);// hash的key也采用String的序列化方式template.setHashKeySerializer(stringRedisSerializer);// value序列化方式采用jacksontemplate.setValueSerializer(jackson2JsonRedisSerializer);// hash的value序列化方式采用jacksontemplate.setHashValueSerializer(jackson2JsonRedisSerializer);template.afterPropertiesSet();return template;}
}

  •  在redis中增加商品P0001的库存数量为10000

  • 使用redis不加锁的业务测试

- 业务测试代码

    /*** 使用redis不加锁*/@Overridepublic void checkAndReduceStock() {// 1. 查询库存数量String stockQuantity = redisTemplate.opsForValue().get("P0001").toString();// 2. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 3.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}}}

- 使用jmeter压测,查看测试结果:库存并没有减少为0,说明存在“超卖”问题

  • 使用redis的setnx指令加锁,开启三个相同服务,使用jmeter压测

- redis加锁测试代码

/*** 使用redis加锁* */@Overridepublic void checkAndReduceStock() {// 1.使用setnx加锁Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock-stock", "0000");// 2.重试:递归调用,如果获取不到锁if (!lock) {try {//暂停50msThread.sleep(50);this.checkAndReduceStock();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 3. 查询库存数量String stockQuantity = (String) redisTemplate.opsForValue().get("P0001");// 4. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 5.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}} else {System.out.println("该库存不存在!");}} finally {// 5.解锁redisTemplate.delete("lock-stock");}}}

- 开启服务7000、7001、7002

 - jmeter压测结果:平均访问时间364ms,接口吞吐量为每秒249

- redis数据库库存结果为:0,并发“超卖”问题解决

  • 以上普通加锁方式存在死锁问题及死锁问题的解决方案

- 死锁产生的原因:在上述redis加锁的正常情况下,是可以解决并发访问的问题,但是也存在死锁的问题,例如7000的服务获取到锁之后,由于服务异常导致锁没有释放,那么7001和7002服务将永远不可能获取到锁。

- 解决方案:给锁设置过期时间,自动释放锁

①使用expire设置过期时间(缺乏原子性:如果在setnx和expire之间出现异常,锁也无法释放)

②使用setex指令设置过期时间:set key value ex 3 nx(保证原子性操作既达到setnx的效果,又设置了过期时间)

- 代码实现

public void checkAndReduceStock() {// 1.使用setex加锁,保证加锁的原子性,以及锁可以自动释放Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock-stock", "0000",3, TimeUnit.SECONDS);// 2.重试:递归调用,如果获取不到锁if (!lock) {try {//暂停50msThread.sleep(50);this.checkAndReduceStock();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 3. 查询库存数量String stockQuantity = (String) redisTemplate.opsForValue().get("P0001");// 4. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 5.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}} else {System.out.println("该库存不存在!");}} finally {// 5.解锁redisTemplate.delete("lock-stock");}}}

- 测试结果:库存扣减为0,锁也释放

  •  防止误删,在以上普通加锁的方式下,存在锁被误删除的情况

- 锁误删除的原因:在上面的加锁场景中,会出现以下的情况,A请求方法获取到锁之后,在业务还没有执行完成,锁就被自动释放,这个时候B请求方法也会获取到锁,在B业务还未执行完成之前,A执行完成并执行手动删除锁操作,这个时候会把B业务的锁释放掉,导致B刚刚获取到锁就被释放,从而产生后续的并发访问问题。

- 模拟锁误删除产生的并发问题

- 库存扣减结果:没有扣减为0,产生并发问题

- 解决方案,每个请求使用全局唯一UUID为value值,删除锁之前,先判断value值是否相同,相同再删除锁

public void checkAndReduceStock() {// 1.使用setex加锁,保证加锁的原子性,以及锁可以自动释放String uuid = UUID.randomUUID().toString();Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock-stock", uuid, 1, TimeUnit.SECONDS);// 2.重试:递归调用,如果获取不到锁if (!lock) {try {//暂停50msThread.sleep(10);this.checkAndReduceStock();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 3. 查询库存数量String stockQuantity = (String) redisTemplate.opsForValue().get("P0001");// 4. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 5.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}} else {System.out.println("该库存不存在!");}} finally {// 5.先判断是否是自己的锁,然后再解锁String redisUuid = (String) redisTemplate.opsForValue().get("lock-stock");if (StringUtils.equals(uuid, redisUuid)) {redisTemplate.delete("lock-stock");}}}}

- 存在的问题:由于判断锁和解锁的操作不具有原子性,仍然会存在误删除的操作,如A请求在完成判断之后准备删除锁的时候,此时A的锁自动释放,B请求获取到锁,这个时候A请求会手动将B请求的锁删除掉,依然存在并发访问的问题。该概率很小。

  •  使用lua脚本解决锁手动释放删除的操作是原子性操作

- lua代码解决误删操作

public void checkAndReduceStock() {// 1.使用setex加锁,保证加锁的原子性,以及锁可以自动释放String uuid = UUID.randomUUID().toString();Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock-stock", uuid, 1, TimeUnit.SECONDS);// 2.重试:递归调用,如果获取不到锁if (!lock) {try {//暂停50msThread.sleep(10);this.checkAndReduceStock();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 3. 查询库存数量String stockQuantity = (String) redisTemplate.opsForValue().get("P0001");// 4. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 5.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}} else {System.out.println("该库存不存在!");}} finally {// 5.先判断是否是自己的锁,然后再解锁String script = "if redis.call('get', KEYS[1]) == ARGV[1] " +"then " +"   return redis.call('del', KEYS[1]) " +"else " +"   return 0 " +"end";redisTemplate.execute(new DefaultRedisScript<>(script, Boolean.class), Arrays.asList("lock-stock"), uuid);}}}

结语

关于使用redis分布式锁解决“超卖”问题的内容到这里就结束了,我们下期见。。。。。。

这篇关于(三)库存超卖案例实战——使用redis分布式锁解决“超卖”问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/283927

相关文章

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J