chapter 1 formation of crystal, basic concepts

2023-10-25 10:10

本文主要是介绍chapter 1 formation of crystal, basic concepts,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

chapter 1 晶体的形成

在这里插入图片描述

1.1 Quantum Mechanics and atomic structure

SUMMARY OF 1.1

1.1.1 Old Quantum Theory

problems of planetary model:

  • atom would be unstable
  • radiate EM wave of continuous frequency

to solve the prablom of planetary model:

  • Bohr: Quantum atomic structure
  • Planck: Quantum

Old Quantum Theory: Planck, Einstein, Bohr, de Broglie

  1. Planck’s theory: Each atomic oscillator can have only discrete values of energy. E = n h ν , n = 0 , 1 , 2 , … E=nh \nu, n=0, 1, 2, \dots E=nhν,n=0,1,2,
  2. Einstein: photon, E = h ν = ℏ ω E=h\nu=\hbar \omega E=hν=ω, p = E c n = h ν c n = h λ n = ℏ k p= \frac{E}{c}n=\frac{h\nu}{c}n=\frac{h}{\lambda}n=\hbar k p=cEn=chνn=λhn=k
  3. Bohr: H atom model
  4. de Broglie: Matter wave, E = h ν = ℏ ω E=h\nu=\hbar \omega E=hν=ω, E k = 1 2 m ν 2 = p 2 2 m = ( ℏ k ) 2 2 m E_k=\frac{1}{2}m\nu^2=\frac{p^2}{2m}=\frac{(\hbar k)^2}{2m} Ek=21mν2=2mp2=2m(k)2

from de Broglie’s Hypothesis, the motion of a particle is governed by the wave propagation properties of matter wave, which means wave function.

1.1.2 Method of Quantum Mechanics

In method of Quantum Mechanics, we should get the Schrodinger Equation and solve it, then find the wave function ψ \psi ψ.

Schrodinger Equation (very important):
i ℏ ∂ Ψ ∂ t = − ℏ 2 2 m ∇ 2 Ψ + U Ψ i\hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2 \Psi+U\Psi itΨ=2m22Ψ+UΨ

a. Schrodinger Equation of free particle

KaTeX parse error: Undefined control sequence: \pPsi at position 24: …\frac{\partial \̲p̲P̲s̲i̲}{\partial t}= …

wave function of free particle: ψ ( r ⃗ , t ) = A e − i ℏ ( E t − p ⋅ r ) \psi (\vec r, t)=A e^{-\frac{i}{\hbar} (Et-p \cdot r)} ψ(r ,t)=Aei(Etpr)

E ⟶ i ℏ ∂ ∂ t E \longrightarrow i \hbar \frac{\partial}{\partial t} Eit

p ⟶ − i ℏ ∇ \mathbf{p} \longrightarrow - i\hbar \nabla piℏ∇

b. Schrodinger Equation of particle in a force field

i ℏ ∂ Ψ ∂ t = − ℏ 2 2 m ∇ 2 Ψ + U Ψ i \hbar \frac{\partial \Psi}{\partial t}= - \frac{\hbar^2}{2m}\nabla^2\Psi + U \Psi itΨ=2m22Ψ+UΨ

We consider time-independent Schrodinger Equation:

U ( r , t ) ⟶ U ( r ) U(\mathbf{r},t) \longrightarrow U(\mathbf{r}) U(r,t)U(r)

then separation of variables: KaTeX parse error: Undefined control sequence: \math at position 28: …f{r} ,t)= \psi(\̲m̲a̲t̲h̲{r})f(t)

Halmiton operator: H ^ = − ℏ 2 2 m ∇ 2 + U \hat H = -\frac{\hbar^2}{2m} \nabla^2+U H^=2m22+U

so the Schrodinger Equ becomes a new style:

H ^ ψ = E ψ \hat H \psi = E \psi H^ψ=Eψ

H ^ Ψ = i ℏ ∂ ∂ t Ψ \hat H \Psi = i\hbar \frac{\partial }{\partial t} \Psi H^Ψ=itΨ

c. Infinite Potential Well

− ( ℏ 2 2 m d 2 d x 2 + U ( x ) ) ψ ( x ) = E ψ ( x ) -(\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+U(x))\psi (x) = E \psi(x) (2m2dx2d2+U(x))ψ(x)=Eψ(x)

ψ ( x ) = 2 a s i n n π a x \psi (x) = \sqrt{\frac{2}{a}}sin{\frac{n \pi}{a}x} ψ(x)=a2 sinax

E = E n = π 2 ℏ 2 2 m a 2 n 2 , n = 1 , 2 , 3 , … E=E_n = \frac{\pi^2 \hbar^2}{2ma^2}n^2, n = 1, 2, 3, \dots E=En=2ma2π22n2,n=1,2,3,

d. Harmonic Oscillator 1D

− ( ℏ 2 2 m d 2 d x 2 + 1 2 m ω 2 x 2 ) ψ ( x ) = E ψ ( x ) -(\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+\frac{1}{2}m\omega^2 x^2)\psi (x) = E \psi(x) (2m2dx2d2+21mω2x2)ψ(x)=Eψ(x)

E n = ( n + 1 2 ) ℏ ω = ( n + 1 2 ) h ν , n = 0 , 1 , 2 , 3 , … E_n = (n + \frac{1}{2})\hbar \omega = (n+\frac{1}{2})h \nu, n = 0, 1, 2, 3, \dots En=(n+21)ω=(n+21)hν,n=0,1,2,3,

  • E m i n = 1 2 h ν ( ≠ 0 ) E_{min}= \frac{1}{2}h\nu(\neq 0) Emin=21hν(=0), which is different from Planck’s blackbody theory ( E = n h ν , E m i n = 0 E=nh\nu, E_{min}=0 E=nhν,Emin=0)
  • In classical mechanics, the particle can bot exceed x(max), but in quantum mechanics, the particle may exceed x(max) (qith low probabilities)
e. Finite Potential Well

( − ℏ 2 2 m d 2 d x 2 + U ( x ) ) ψ ( x ) = E ψ ( x ) (-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+U(x))\psi(x) = E\psi(x) (2m2dx2d2+U(x))ψ(x)=Eψ(x)

Quantum Tunneling

f. Atomic Structure, Schrodinger Equ. for H Atom

( − ℏ 2 2 m ∇ 2 + U ) ψ = E ψ , ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 (-\frac{\hbar^2}{2m}\nabla^2 + U)\psi = E\psi, \nabla^2 = \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} (2m22+U)ψ=Eψ,2=x22+y22+z22

Schrodinger equ. becomes:

1 r 2 ∂ ∂ r ( r 2 ∂ ψ ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ ψ ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 θ ∂ ϕ 2 + 2 m ℏ ( E − U ) ψ = 0 \frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial \psi}{\partial r}) +\frac{1}{r^2 \sin{\theta}} \frac{\partial}{\partial \theta}(\sin{\theta} \frac{\partial \psi}{\partial \theta}) + \frac{1}{r^2\sin^2{\theta}}\frac{\partial^2\theta}{\partial \phi^2} +\frac{2m}{\hbar}(E-U)\psi = 0 r21r(r2rψ)+r2sinθ1θ(sinθθψ)+r2sin2θ1ϕ22θ+2m(EU)ψ=0

use seperation of variables: ψ ( r , θ , ϕ ) = R ( r ) Θ ( θ ) Φ ( ϕ ) \psi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi) ψ(r,θ,ϕ)=R(r)Θ(θ)Φ(ϕ)

Schrodinger equ. becomes:

− sin ⁡ 2 θ R d d r ( r 2 d R d r ) − 2 m ℏ 2 r 2 sin ⁡ 2 θ ( E − U ) − sin ⁡ θ Θ = 0 \frac{-\sin^2{\theta}}{R} \frac{d}{dr}(r^2\frac{dR}{dr}) -\frac{2m}{\hbar^2} r^2 \sin^2{\theta} (E-U) -\frac{\sin{\theta}}{\Theta} = 0 Rsin2θdrd(r2drdR)22mr2sin2θ(EU)Θsinθ=0

Both Equal to a constant

{ 1 Φ d 2 Φ d ϕ 2 = − m l 2 m l 2 sin ⁡ 2 θ − 1 Θ 1 sin ⁡ θ d d θ ( sin ⁡ θ d Θ d t h e t a ) = l ( l + 1 ) 1 R d d r ( r 2 d R d r ) + 2 m ℏ 2 r 2 ( E − U ) = l ( l + 1 ) \begin{cases} \frac{1}{\Phi} \frac{d^2\Phi}{d\phi^2} = -m_l^2 \\ \frac{m_l^2}{\sin^2{\theta}} -\frac{1}{\Theta} \frac{1}{\sin{\theta}} \frac{d}{d\theta} (\sin{\theta} \frac{d\Theta}{dtheta}) =l(l+1) \\ \frac{1}{R} \frac{d}{dr}(r^2 \frac{dR}{dr})+\frac{2m}{\hbar^2} r^2(E-U) = l(l+1) \end{cases} Φ1dϕ2d2Φ=ml2sin2θml2Θ1sinθ1dθd(sinθdthetadΘ)=l(l+1)R1drd(r2drdR)+22mr2(EU)=l(l+1)

(1) ϕ \phi ϕ must be single-valued: m l = 0 , ± 1 , ± 2 , … m_l = 0, \pm 1, \pm2, \dots ml=0,±1,±2,

(2) Θ \Theta Θ must be finite: l = 0 , 1 , 2 , … a n d l ≥ ∣ m l ∣ l = 0, 1, 2, \dots and \ \ l \ge |m_l| l=0,1,2,and  lml

(3) R must be finite: E = E n = − Z 2 e 4 m 8 ϵ 0 2 h 2 1 n 2 , n = 1 , 2 , 3 , … a n d l < n E=E_n = -\frac{Z^2e^4 m}{8 \epsilon_0^2 h^2}\frac{1}{n^2}, \ n= 1, 2, 3, \dots \ \ and \ \ l<n E=En=8ϵ02h2Z2e4mn21, n=1,2,3,  and  l<n

{ 主量子数   n : p r i n c i p l e q u a n t u m n u m b e r ⟶ d e c i d e E n 角量子数   l : o r b i t a l q u a n t u m n u m b e r ⟶ 0 , 1 , 2 , … , n − 1 磁量子数   m l : m a g n e t i c q u a n t u m n u m b e r ⟶ 0 , ± 1 , ± 2 , ± 3 , … , ± l \begin{cases} 主量子数 \ \ n:\ principle\ quantum\ number\ \longrightarrow\ decide\ E_n\\ 角量子数 \ \ l:\ orbital\ quantum\ number\ \longrightarrow\ 0, 1, 2, \dots , n-1 \\ 磁量子数 \ \ m_l: \ magnetic\ quantum\ number\ \longrightarrow\ 0, \pm 1, \pm2, \pm 3, \dots, \pm l \end{cases} 主量子数  n: principle quantum number  decide En角量子数  l: orbital quantum number  0,1,2,,n1磁量子数  ml: magnetic quantum number  0,±1,±2,±3,,±l

不考虑自旋,量子数=波函数个数=量子态数=轨道数

Pauli’s Exclusion Principle: not 2 electrons in a system ( an atom or a solid ) can be in the same quantum state ( have the same n, l, m l m_l ml, m s m_s ms)

1.1.3 Distributing functions of micro-particles

A system with N identical micro-particles, without either generation of new particles or vanishing of existed particles, without energy exchange—an isolated system

energy level: E 1 , E 2 , E 3 , … , E l , … E_1, E_2, E_3, \dots,E_l, \dots E1,E2,E3,,El,

degeneracy: ω 1 , ω 2 , ω 3 , … . ω l , … \omega_1, \omega_2,\omega_3,\dots.\omega_l,\dots ω1,ω2,ω3,.ωl,

particle number: a 1 , a 2 , a 3 , … , a l , … a_1, a_2, a_3, \dots,a_l,\dots a1,a2,a3,,al,

全同性原理给量子统计和经典统计带来重要差别;
泡利不相容原理又给费米子和玻色子的统计带来重要差别。

自旋为 ± 1 2 \pm\frac{1}{2} ±21的粒子服从泡利不相容原理。

a. Boltzmann system

Every particle is identified, the number of particles in an quantum state is unlimited.

标号可分辨,能级上粒子数无限制

a l = ω l e α + β E l a_l = \frac{\omega_l}{e^{\alpha+\beta E_l}} al=eα+βElωl

Boltzmann statistics: f l = a l ω l = 1 e α + β E l = 1 e E l − μ k B T f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} }} fl=ωlal=eα+βEl1=ekBTElμ1

b. Bose system

Every particle is unidentified, the number of particles in an quantum state is unlimited.

(photon,phonon…) - Boson

玻色子:声子、光子

不可分辨,能级上粒子无限

a l = ω l e α + β E l − 1 a_l = \frac{\omega_l}{e^{\alpha+\beta E_l} -1} al=eα+βEl1ωl

Bose-Einstein statistics: f l = a l ω l = 1 e α + β E l − 1 = 1 e E l − μ k B T − 1 f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}-1} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} } -1} fl=ωlal=eα+βEl11=ekBTElμ11

c.Femi system

Every particle is unidentified, the number of particles in an quantum state is limited by Pauli repulsive principle.

(electron, proton…) - Fermion

费米子:电子、质子

不可分辨,能级上粒子个数有限

a l = ω l e α + β E l + 1 a_l = \frac{\omega_l}{e^{\alpha+\beta E_l} +1} al=eα+βEl+1ωl

Fermi-Dirac statistics: f l = a l ω l = 1 e α + β E l + 1 = 1 e E l − μ k B T + 1 f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}+1} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} } +1} fl=ωlal=eα+βEl+11=ekBTElμ+11

α = − μ k B T , β = 1 k B t \alpha = - \frac{\mu}{k_B T},\ \ \ \beta = \frac{1}{k_B t} α=kBTμ,   β=kBt1

统计力学

1.2 binding

1.2.1 interatomic bonding

potential between two atoms: U ( R ) = − a R m + b R n U(R)=\frac{-a}{R^m}+\frac{b}{R^n} U(R)=Rma+Rnb

attraction and repulsionA higher binding energy means a higher melting point!

1.2.2 ionic bond

Ionic bond is formed between atoms with large differences in electronegativity. (电负性相差较大)

binding energy: 150~370 kcal/mol

Cohesive Energy in Ionic Crystal

U ( r ) = − N a q 2 4 π ϵ 0 2 r + N B ′ r n U(r) = - \frac{Naq^2}{4\pi \epsilon_0^2 r} +\frac{NB'}{r^n} U(r)=4πϵ02rNaq2+rnNB

Madelung constant: B ′ = ∑ j = 1 2 N − 1 b l j n , α = ∑ j = 1 2 N − 1 δ j l j B' = \sum_{j=1}^{2N-1} \frac{b}{l_j^n}, \ \ \ \ \alpha = \sum_{j=1}^{2N-1} \frac{\delta_j}{l_j} B=j=12N1ljnb,    α=j=12N1ljδj

The bigger the cell, the more exactness the Madelung constant is.

在这里插入图片描述

1.2.3Van der Waals bond

1.2.4 Hydrogen bond

1.2.5 Covalent bond

1.2.6 Metallic bond

1.3 crystal structure and typical crystals

1.3.1 crystal structure

basic concept:

  • 无定形晶体 Amorphous (Non-crystalline) Solid: All atoms have order only within a few atomic or molecular dimensions. — random arrangement in a bigger size
  • 长程有序 Crystal: All atoms or molecules in the solid have a regular geometric arrangement or periodicity. — highly ordered
  • 平移对称性 Periodicity: The quality of recurring at regular intervals.
  • 基元 Basis: Repeatable structure units.
  • 格点 Latice site: The dot representing a basis.
  • 晶格 Lattice (Crystal lattice): Geometric pattern of crystal structure

Crystal Structure = Lattice + Basis

primitive vectors 基矢

position vectors 格矢

primitive unit cell 原胞

conventional unit cell 晶胞

Bravais Lattice 布拉伐点阵:The geometric pattern of basis’ arrangement; all points of the lattice is identical.

Bravais lattice only summarizes the geometry of crystals, regardless of what the actual units may be.

The basis consists of the atoms, their spaces and bond angles.

Bravais lattice:

  1. Cubic 立方
  2. Hexahonal 六方
  3. Tetragonal 四方
  4. Trigonal 三方
  5. Monoclinic 单斜
  6. Orthorhomic 正交
  7. Triclinic 三斜

7种bravais晶系,14种bravais点阵,32点群
Bravais Lattice
Catalog of the 14 Bravais lattices classified according to their lattice system Lattice System Point Group Primitive Base-Centered Body-Centered Face-Centered

1.3.2 typical crystal structure

a. important parameters in crystal structure

number of atoms per unit cell: n

the number of nearest neighbors, or Coordination Number: CN 配位数

Atomic Packing Factor: APF 原子堆积因数

A P F = v o l u m e o f a t o m s i n u n i t c e l l v o l u m e o f u n i t c e l l APF = \frac{volume\ \ of \ \ atoms \ \ in \ \ unit \ \ cell}{volume \ \ of \ \ unit\ \ cell} APF=volume  of  unit  cellvolume  of  atoms  in  unit  cell

Atomic Radius: 原子半径

b. typical cubic structure of metal

在这里插入图片描述

c. typical crystal structure of semiconductor

在这里插入图片描述
在这里插入图片描述

d. typical crystal structure of Ionic Crystal

在这里插入图片描述

e. typical crystal structure and the Bravais Lattice

在这里插入图片描述

1.4 Reciprocal Lattice and Brillouin Zone

1.4.1 Reciprocal Lattice 倒易点阵

晶体衍射得到的图象(衍射斑点)是倒易点阵的二维投影空间放大。

Fourier series: 傅里叶级数
f ( x + 2 π ) = f ( x ) f(x+2\pi) = f(x) f(x+2π)=f(x)
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x) = \frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n \cos {nx} +b_n \sin{nx}) f(x)=2a0+n=1(ancosnx+bnsinnx)
f ( x ) = ∑ n c n e i n x , c n = 1 2 π ∫ − π π f ( x ) e − i n x d x f(x) =\sum_n c_n e^{inx},\ \ \ c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx f(x)=ncneinx,   cn=2π1ππf(x)einxdx

Reciprocal lattice (space): 倒易点阵,晶体空间周期性

  1. 如何求倒格矢?
  2. 点阵和倒易点阵的原胞体积关系?
  3. 正格矢和倒格矢晶面的关系?
  4. 互为倒易?
    1D 3D的倒格矢
    互为倒易SC--SC, FCC-BCC, BCC-FCC
    倒格矢

reciprocal space & wave-vector space (k-space): 倒易空间和波矢空间(k空间)

u ( x , t ) = A cos ⁡ ( ω t − k x + ϕ 0 ) u(x,t) = A \cos (\omega t - k x +\phi_0) u(x,t)=Acos(ωtkx+ϕ0)

u ~ ( x , t ) = A ~ e i ( ω t − k x ) \widetilde{u}(x,t) =\widetilde{A} e^{i(\omega t - k x)} u (x,t)=A ei(ωtkx)

k = 2 π λ n ^ , b = 2 π a i ^ , G = 2 π p a i ^ \mathbf{k} = \frac{2 \pi}{\lambda} \hat n ,\ \ \mathbf{b} = \frac{2\pi}{a} \hat i ,\ \ \mathbf{G} = \frac{2\pi p}{a}\hat i k=λ2πn^,  b=a2πi^,  G=a2πpi^

1.4.2 Crystal Diffraction 晶体衍射

The Bragg Law:将晶体视作平行等距的晶面,将晶体对电磁波的衍射看作一组组晶面对电磁波的反射

2 d sin ⁡ θ = n λ 2d \sin{\theta} = n\lambda 2dsinθ=

Bragg's Law
Bragg's Law
Laue equation

入射和散射的电磁波波程差:
KaTeX parse error: Undefined control sequence: \mathcf at position 35: …cos \theta ' = \̲m̲a̲t̲h̲c̲f̲{d} \cdot (\mat…$

Laue Equ (与布拉格定律等价的晶体衍射关系): k ′ − k = G , Δ k = G \mathbf{ k' - k = G, \ \ \ \Delta k = G} kk=G,   Δk=G

2 k ⋅ G = G 2 2 \mathbf{k} \cdot \mathbf{G} = G^2 2kG=G2

Laue Equ
在这里插入图片描述
Ewald structure

晶体衍射的实际过程真实存在的:电子束,样品台(晶体),接收屏上的衍射斑点。

其他的(倒易点阵、Laue Equ、Ewald球)都是虚拟的,但是它们可以帮助分析衍射的过程和原理、以及衍射斑点的位置。

process of diffraction

Ewald Sphere
Ewald structure

1.4.3 Brillouin Zone 布里渊区

以一个格点为原点O,找到原点O与其他格点的连线的中垂面,这些中垂面形成许多封闭区域,即布里渊区。

包围原点且最近的叫做第一布里渊区,此后称为第二、第三,以此类推。

  • 倒易点阵的倒格原点在第一布里渊区的中点。
  • 所有布里渊区具有相同的体积。
  • 每个布里渊区含有且仅有一个格点。
  • 一个布里渊区的体积等于一个原胞的体积。
  • 布里渊区是晶格振动和能带理论中的常用概念。电子在跨越倒格矢中垂面(布里渊区界面)时会发生能量不连续变化。

在这里插入图片描述

在这里插入图片描述

1-st BZ

Brillouin Zone Interface & Crystal diffraction

发生晶体衍射的条件:

  1. 满足布拉格定律;
  2. 满足Laue Equ.;
  3. 波矢 k ⃗ \vec k k 的端点落在布里渊区界面上。

这篇关于chapter 1 formation of crystal, basic concepts的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281855

相关文章

Chapter 13 普通组件的注册使用

欢迎大家订阅【Vue2+Vue3】入门到实践 专栏,开启你的 Vue 学习之旅! 文章目录 前言一、组件创建二、局部注册三、全局注册 前言 在 Vue.js 中,组件是构建应用程序的基本单元。本章详细讲解了注册和使用 Vue 的普通组件的两种方式:局部注册和全局注册。 本篇文章参考黑马程序员 一、组件创建 ①定义 Vue 组件是一种具有特定功能的 Vue 实

Chapter 10 Stability and Frequency Compensation

Chapter 10 Stability and Frequency Compensation Chapter 8介绍了负反馈, 这一章介绍稳定性, 如果设计不好, 负反馈系统是要发生震荡的. 首先我们学习理解稳定判断标准和条件, 然后学习频率补偿, 介绍适用于不同运放的补偿方式, 同时介绍不同补偿对两级运放slew rate的影响, 最后介绍Nyquist’s判断标准 10.1 Gener

查看Excel 中的 Visual Basic 代码,要先设置excel选项

1. excel VB的简单介绍 百度安全验证 2.excel选项设置 excel表格中在选项->自定义功能区域,选择开发工具,visual baisc/查看代码,即可看到代码。 3.excel已经设置,可以直接查看

[学习笔记]《CSAPP》深入理解计算机系统 - Chapter 3 程序的机器级表示

总结一些第三章的一些关键信息 Chapter 3 程序的机器级表示结构 updating... Chapter 3 程序的机器级表示 局部变量通常保存在寄存器中,而不是内存中,访问寄存器比内存快的多. 有些时候,局部数据必须存放在内存中, 寄存器不足够存放所有的本地数据对一个局部变量使用地址运算符 &, 因此必须能够为它产生一个地址某些局部变量是数组或结构,因此必须能够通过数组或

Basic Calculator 总结

Basic Calculator 思路:stack中间存数,遇见+,-都当符号位,push num或者-num进去;最后相加;重要的是如何处理括号,那么这里一种方法是用递归调用;count左右括号,如果为0,那么就是一个反括号的位置了,那么 //(      ) //j......i; substring(j + 1, i); 这题的通用解法,可以扩展到二三题; class Solutio

Large Language Models(LLMs) Concepts

1、Introduction to Large Language Models(LLM) 1.1、Definition of LLMs Large: Training data and resources.Language: Human-like text.Models: Learn complex patterns using text data. The LLM is conside

Chapter 10 async函数 await关键字

欢迎大家订阅【Vue2+Vue3】入门到实践 专栏,开启你的 Vue 学习之旅! 文章目录 前言一、async 函数二、await 关键字 前言 在现代 JavaScript 开发中,异步编程是一个重要的概念。随着 ES2017 的引入,async 函数和 await 关键字为处理异步操作提供了更简洁和可读的方式。本章详细讲解了这两个关键字的特性及其用法。 一、

Chapter 2 multi-armed Bandit

引用:https://blog.csdn.net/mmc2015/article/details/51247677 https://blog.csdn.net/coffee_cream/article/details/58034628 https://blog.csdn.net/heyc861221/article/details/80129310   The most importa

第三章 少量(无)标记增强现实——Chapter 3:Marker-less Augmented Reality

注释: 1、翻译书名:Mastering OpenCV with Practical Computer Vision Projects 2、翻译章节:Chapter 3:Marker-less Augmented Reality 3、电子书下载,源代码下载,请参考:http://blog.csdn.net/raby_gyl/article/details/11617875 4、本章程序