自动根据数据生成降雨量实况Word报告

2023-10-25 03:59

本文主要是介绍自动根据数据生成降雨量实况Word报告,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:小小明

最近遇到一个有点烧脑的需求,其实也不算烧脑,主要是判断条件过多,对于我这种记忆力差,内存小的人来说容易出现内存溢出导致大脑宕机。也可能是因为我还没有找到能减小大脑内存压力的写法。
若读者有啥更好解决方案,欢迎评论噢!

先看看需求吧:

image-20210103105704976

主要就是要根据左侧的表格自动生成右侧的word统计报告,实际的各种可能性情况远比图中展示的要更加复杂。

好了,直接开始干代码吧:

数据读取

import pandas as pddf = pd.read_csv("11月份数据.csv", encoding='gbk')
# 当前统计月份
month = 11
df = df.query('月份==@month')
df

数据:

区域月份降雨量(mm)降雨距平(mm)观测站
06e63e112.9-0.70A站
11b8dd111.0-3.40A站
27c6a0112.3-3.04A站
3548ad118.50.10A站
41bafe118.72.20A站
551a451116.07.41A站
653f42116.81.10A站
74f644111.8-0.60A站
860a75110.0-2.60A站
94319d111.4-2.20A站
1062464112.2-1.00A站
1165cb4112.0-1.00A站
12e68da111.2-1.40A站
134156e113.1-0.40A站
141cc6d113.3-2.00A站
1516d40110.0-0.50B站
1654ac3113.20.00B站
17592ac114.1-0.20B站
1832046115.31.10B站
194e6f0111.20.50B站
203722c113.51.40C站
215379c111.3-2.90C站
2251eed113.2-0.60C站
232d91d112.80.90D站
2478896115.11.60D站
2525464115.51.50D站
2666955110.3-3.10D站
277639e110.0-1.10D站
281c5ff110.6-0.90D站
29ec4561112.2NaNE站
3029b6b117.34.00E站
31220de1112.29.10E站
323b5f01113.67.25E站

异常数据过滤

查看缺失值数量:

pd.isnull(df).sum()

结果:

区域          0
月份          0
降雨量(mm)     0
降雨距平(mm)    1
观测站         0
dtype: int64

仅一个缺失值数据,可直接删除:

df.dropna(inplace=True)

计算所有观测站降雨量相对往年的比较

计算降雨量比往年高,跟往年比无变化,以及比往年低的次数分别是多少:

rainfall_high = df.eval('`降雨距平(mm)` > 0').value_counts().get(True, 0)
rainfall_equal = df.eval('`降雨距平(mm)` == 0').value_counts().get(True, 0)
rainfall_low = df.eval('`降雨距平(mm)` < 0').value_counts().get(True, 0)
print(rainfall_high, rainfall_equal, rainfall_low)
13 1 18

上面的结果中rainfall_high表示降雨量比往年平均水平高的次数,rainfall_equal表示降雨量比往年平均水平持平的次数,rainfall_low表示降雨量比往年平均水平低的次数。

于是分情况讨论生成第一段的报告:

p1 = f"{month}月份"
if rainfall_low == 0 or rainfall_high == 0:if rainfall_equal != 0:p1 += f"除{rainfall_equal}个观测站降雨量较往年无变化外,"if rainfall_high == 0:p1 += f"各气象观测站降雨量较往年均偏低。"elif rainfall_low == 0:p1 += f"各气象观测站降雨量较往年均偏高。"
else:#  10%以内差异认为是持平if rainfall_high > rainfall_low*1.1:p1 += f"大部分气象观测站降雨量较往年偏高。"elif rainfall_low > rainfall_high*1.1:p1 += f"大部分气象观测站降雨量较往年偏低。"else:p1 += f"各气象观测站降雨量较往年整体持平。"
p1

结果:

'11月份大部分气象观测站降雨量较往年偏低。'

计算各区域降雨量的极值

再生成第二段的报告:

p2 = ""
t = df['降雨量(mm)']
p2 += f"各区域降雨量在{t.min()}~{t.max()}mm之间,其中{df.loc[t.argmax(), '区域']}区域的降雨量最大,为{t.max()}mm。"
p2

结果:

'各区域降雨量在0.0~16.0mm之间,其中51a45区域的降雨量最大,为16.0mm。'

分观测站统计

让我脑袋疼的地方就是从这里的代码开始的,后面还有更复杂蛋疼的需求就不公布了。

对每个观测站分别统计哪些区域偏高,哪些区域持平,哪些区域偏低:

p3s = []
for station, tmp in df.groupby('观测站'):t = tmp['降雨量(mm)']p3 = f"各区域降雨量在{t.min()}~{t.max()}mm之间,"rainfall_high_mask = tmp.eval('`降雨距平(mm)` > 0')rainfall_equal_mask = tmp.eval('`降雨距平(mm)` == 0')rainfall_low_mask = tmp.eval('`降雨距平(mm)` < 0')rainfall_high = rainfall_high_mask.value_counts().get(True, 0)rainfall_equal = rainfall_equal_mask.value_counts().get(True, 0)rainfall_low = rainfall_low_mask.value_counts().get(True, 0)
#     print(rainfall_high, rainfall_equal, rainfall_low)if rainfall_low == 0 or rainfall_high == 0:if rainfall_equal != 0:p3 += '除'p3 += '、'.join(tmp.loc[rainfall_equal_mask, '区域']+'区域')p3 += "降雨量较往年无变化外,"if rainfall_high == 0:p3 += f"各区域降雨量均较往年偏低"elif rainfall_low == 0:p3 += f"各区域降雨量均较往年偏高"t = tmp['降雨距平(mm)'].abs()p3 += f"{t.min()}~{t.max()}mm;"else:if rainfall_equal != 0:p3 += '除'p3 += '、'.join(tmp.loc[rainfall_equal_mask, '区域']+'区域')p3 += "降雨量较往年无变化,"#  10%以内差异认为是持平if rainfall_high > rainfall_low*1.1:if rainfall_equal == 0:p3 += '除'p3 += '、'.join(tmp.loc[rainfall_low_mask, '区域']+'区域')p3 += "降雨量较往年偏低"t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs()if t.shape[0] > 1:p3 += f"{t.min()}~{t.max()}mm"else:p3 += f"{t.min()}mm"p3 += "外,"t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs()p3 += f"其余各区域降雨量较往年偏高{t.min()}~{t.max()}mm;"elif rainfall_low > rainfall_high*1.1:if rainfall_equal == 0:p3 += '除'p3 += '、'.join(tmp.loc[rainfall_high_mask, '区域']+'区域')p3 += "降雨量较往年偏高"t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs()if t.shape[0] > 1:p3 += f"{t.min()}~{t.max()}mm"else:p3 += f"{t.min()}mm"p3 += "外,"t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs()p3 += f"其余各区域降雨量较往年偏低{t.min()}~{t.max()}mm;"else:if rainfall_equal != 0:p3 = p3[:-1]+'外,'p3 += f"各区域降雨量较往年偏高和偏低的数量持平,其中"p3 += '、'.join(tmp.loc[rainfall_low_mask, '区域']+'区域')p3 += "降雨量较往年偏低"t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs()if t.shape[0] > 1:p3 += f"{t.min()}~{t.max()}mm,"else:p3 += f"{t.min()}mm,"p3 += '、'.join(tmp.loc[rainfall_high_mask, '区域']+'区域')p3 += "降雨量较往年偏高"t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs()if t.shape[0] > 1:p3 += f"{t.min()}~{t.max()}mm;"else:p3 += f"{t.min()}mm;"p3s.append([station, p3])
p3s[-1][-1] = p3s[-1][-1][:-1]+"。"
p3s

结果:

[['A站','各区域降雨量在0.0~16.0mm之间,除548ad区域、1bafe区域、51a45区域、53f42区域降雨量较往年偏高0.1~7.41mm外,其余各区域降雨量较往年偏低0.4~3.4mm;'],['B站','各区域降雨量在0.0~5.3mm之间,除54ac3区域降雨量较往年无变化外,各区域降雨量较往年偏高和偏低的数量持平,其中16d40区域、592ac区域降雨量较往年偏低0.2~0.5mm,32046区域、4e6f0区域降雨量较往年偏高0.5~1.1mm;'],['C站', '各区域降雨量在1.3~3.5mm之间,除3722c区域降雨量较往年偏高1.4mm外,其余各区域降雨量较往年偏低0.6~2.9mm;'],['D站','各区域降雨量在0.0~5.5mm之间,各区域降雨量较往年偏高和偏低的数量持平,其中66955区域、7639e区域、1c5ff区域降雨量较往年偏低0.9~3.1mm,2d91d区域、78896区域、25464区域降雨量较往年偏高0.9~1.6mm;'],['E站', '各区域降雨量在7.3~13.6mm之间,各区域降雨量均较往年偏高4.0~9.1mm。']]

可能是我还没有想出较好的封装方式导致代码变得这么复杂,如果有巧妙解决这个问题方法的朋友,希望能够一起探讨。

将组织好的文本写入到word文档中

word模板文件docxtemplate.docx的内容:

一、{{ month }}月各气象观测站降雨量实况
(一)降水
{{ p1 }}
{{ p2 }}
{%p for station,p3 in p3s %}
{{ station }}:{{ p3 }}
{%p endfor %}

即:

image-20210103110456765

python渲染代码:

from docxtpl import DocxTemplatetpl = DocxTemplate("docxtemplate.docx")
context = {'month': month,'p1': p1,'p2': p2,'p3s': p3s,
}
tpl.render(context)
tpl.save("11月降雨量报告.docx")

执行完毕,得到word报告:

image-20210103110602273

这篇关于自动根据数据生成降雨量实况Word报告的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/279891

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE