深度剖析isinstance的检查机制

2023-10-25 00:30

本文主要是介绍深度剖析isinstance的检查机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1Python中文社区 全球Python中文开发者的 精神部落 640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

起步

通过内建方法 isinstance(object, classinfo) 可以判断一个对象是否是某个类的实例。但你是否想过关于鸭子协议的对象是如何进行判断的呢? 比如 list 类的父类是继 object 类的,但通过 isinstance([], typing.Iterable) 返回的却是真,难道 list 是可迭代的子类?

根据 PEP 3119 的描述中得知实例的检查是允许重载的:

 
  1. The primary mechanism proposed here is to allow overloading the built-in functions isinstance() and issubclass(). The overloading works as follows: The call isinstance(x, C) first checks whether C.__instancecheck__ exists, and if so, calls C.__instancecheck__(x) instead of its normal implementation.

这段话的意思是,当调用 isinstance(x, C) 进行检测时,会优先检查是否存在 C.instancecheck,如果存在则调用 C.instancecheck(x) ,返回的结果便是实例检测的结果,默认的判断方式就没有了。

这种方式有助于我们来检查鸭子类型,我用代码测了一下。

 
  1. class Sizeable(object):

  2.    def __instancecheck__(cls, instance):

  3.        print("__instancecheck__ call")

  4.        return hasattr(instance, "__len__")

  5. class B(object):

  6.    pass

  7. b = B()

  8. print(isinstance(b, Sizeable)) # output:False

只打印了 False,并且 instancecheck 没有调用。 这是怎么回事。可见文档描述并不清楚。打破砂锅问到底的原则我从源码中观察 isinstance 的检测过程。

从源码来看 isinstance 的检测过程

这部分的内容可能比较难,如果读者觉得阅读有难度可以跳过,直接看结论。isinstance 的源码在 abstract.c 文件中:

 
  1. [abstract.c]

  2. int

  3. PyObject_IsInstance(PyObject *inst, PyObject *cls)

  4. {

  5.    _Py_IDENTIFIER(__instancecheck__);

  6.    PyObject *checker;

  7.    /* Quick test for an exact match */

  8.    if (Py_TYPE(inst) == (PyTypeObject *)cls)

  9.        return 1;

  10.    ....

  11. }

Py_TYPE(inst) == (PyTypeObject *)cls 这是一种快速匹配的方式,等价于 type(inst) is cls ,这种快速的方式仅当 inst = cls() 匹配成功,并不会去优先检查 instancecheck ,所以文档中有误。继续向下看源码:

 
  1. /* We know what type's __instancecheck__ does. */

  2.    if (PyType_CheckExact(cls)) {

  3.        return recursive_isinstance(inst, cls);

  4.    }

展开宏 PyType_CheckExact :

 
  1. [object.h]

  2. #define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)

也就是说 cls 是由 type 直接构造出来的类,则判断语言成立。除了类声明里指定 metaclass 外基本都是由 type 直接构造的。从测试代码中得知判断成立,进入 recursiveisinstance。但是这个函数里面我却没找到有关 instancecheck 的代码,recursiveisinstance 的判断逻辑大致是:

 
  1. def recursive_isinstance(inst, cls):

  2.    return pyType_IsSubtype(inst, cls)

  3. def pyType_IsSubtype(a, b):

  4.    for mro in a.__class__.__mro__:

  5.        if mro is b:

  6.            return True

  7.    return False

是从 mro 继承顺序来判断的,mro 是一个元组,它表示类的继承顺序,这个元组的中类的顺序也决定了属性查找顺序。回到 PyObject_IsInstance 函数往下看:

 
  1. if (PyTuple_Check(cls)) {

  2.    ...

  3. }

这是当 instance(x, C) 第二个参数是元组的情况,里面的处理方式是递归调用 PyObject_IsInstance(inst, item) 。继续往下看:

 
  1. checker = _PyObject_LookupSpecial(cls, &PyId___instancecheck__);

  2. if (checker != NULL) {

  3.    res = PyObject_CallFunctionObjArgs(checker, inst, NULL);

  4.    ok = PyObject_IsTrue(res);

  5.    return ok;

  6. }

显然,这边才是获得 instancecheck 的地方,为了让检查流程走到这里,定义的类要指明 metaclass 。剩下就是跟踪下 PyObjectLookupSpecial 就可以了:

 
  1. [typeobject.c]

  2. PyObject *

  3. _PyObject_LookupSpecial(PyObject *self, _Py_Identifier *attrid)

  4. {

  5.    PyObject *res;

  6.    res = _PyType_LookupId(Py_TYPE(self), attrid);

  7.    // 有回调的话处理回调

  8.    // ...

  9.    return res;

  10. }

取的是 PyTYPE(self) ,也就是说指定的 metaclass 里面需要定义 instancecheck ,获得该属性后,通过 PyObjectCallFunctionObjArgs 调用,调用的内容才是用户自定义的重载方法。

检查机制总结

至此,isinstance 的检测过程基本清晰了,为了便于理解,也得益于python很强的自解释能力,我用python代码来简化 isinstance 的过程:

 
  1. def _isinstance(x, C):

  2.    # 快速匹配

  3.    if type(x) is C:

  4.        return True

  5.    # 如果是由元类 type 直接构造的类

  6.    if type(C) is type:

  7.        return C in x.__class__.__mro__

  8.    # 如果第二个参数是元组, 则递归调用

  9.    if type(C) is tuple:

  10.        for item in C:

  11.            r = _isinstance(x, item)

  12.            if r:

  13.                return r

  14.    # 用户自定义检测规则

  15.    if hasattr(C, "__instancecheck__"):

  16.        return C.__instancecheck__(x)

  17.    # 默认行为

  18.    return C in x.__class__.__mro__

判断的过程中有5个步骤,而用户自定义的 instancecheck 则比较靠后,这个检测过程主要还是以默认的行为来进行的,用户行为并不优先。

重载 isinstance(x, C)

因此,要想重载 isinstance(x, C) ,让用户能自定义判断结果,就需要满足以下条件:

x 对象不能是由 C 直接实例化; 

C 类指定 metaclass ; 

指定的 metaclass 类中定义了 instancecheck 。 

满足这些条件后,比如对鸭子协议如何判断就比较清楚了:

 
  1. class MetaSizeable(type):

  2.    def __instancecheck__(cls, instance):

  3.        print("__instancecheck__ call")

  4.        return hasattr(instance, "__len__")

  5. class Sizeable(metaclass=MetaSizeable):

  6.    pass

  7. class B(object):

  8.    pass

  9. b = B()

  10. print(isinstance(b, Sizeable))  # output: False

  11. print(isinstance([], Sizeable)) # output: True

本次测试环境 Python3.6.0

作者:weapon,不会写程序的浴室麦霸不是好的神经科医生


     

赞赏作者

640?wx_fmt=png

最近热门文章

用Python更加了解微信好友

如何用Python做一个骚气的程序员

用Python爬取陈奕迅新歌《我们》10万条评论的新发现

用Python分析苹果公司股价数据

Python自然语言处理分析倚天屠龙记

640?wx_fmt=jpeg

▼ 点击下方阅读原文免费成为社区会员

这篇关于深度剖析isinstance的检查机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278782

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1