Smartbi:新消费拐点来临,零售业数据化运营势在必行

2023-10-24 23:40

本文主要是介绍Smartbi:新消费拐点来临,零售业数据化运营势在必行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​2020年伊始,一场疫情肆虐了大江南北,全国人民被迫足不出户,多个行业也被迫歇业,迎来了史上消费最低的春节。

但寒冬之下,并非没有亮色。部分行业迎来了爆发的契机:以生鲜电商、即时配送为代表的新零售乘势攻城略地;在线医疗、在线教育、远程办公、宅娱乐等新型“宅经济”全面“侵入”生活,重塑消费理念和消费模式。

未来,正加速而来。

疫情之下,大数据、云计算等底层技术与产业链、供应链的深度互嵌交融像一场预演,不断刺激着新一代技术革命深化。数字化浪潮汹涌,新基建概念走红。“数字化转型”成为企业的不二选择。

一、疫情之下,零售业是挑战点也是机会点

订单爆发式增长,零售业“有单无力接”

随着疫情的升温,线下零售出现大面积囤货现象,粮油食品、烟酒饮料、日用品等成为大众的必选消费品,大型超市、社区生鲜、新零售超市、便利店等零售业受制约程度低,商品架秒空,一天内要补货十几次,销售更是翻了几十倍。盒马在疫情期间线上单量更是恐怖式翻越数百倍,线上客户增加97%,消费频率增加15%。

image.png

但是,由于部分零售店未进行数字化运营,不具备完善供应链体系,没有在疫情前做好准备,大型商超在疫情中期销售额反而大幅下降15%。盒马最大产能的限购也只能在凌晨的3-5分钟约满,叮咚买菜/每日优鲜同样出现大面积售罄。面对爆发式的增长大家都没提前准备好,造成了“有单无力接”的困局!

消费习惯改变带来市场需求升级

今年开春,新零售强势反弹。85后–95后消费人群崛起,支付方式发生革命性改变,移动支付成为主流,社交媒体购物意愿强,对于零售商提供的数字化新服务体验意愿强,同时对服务体验的需求不断提升。疫情作为“一个强迫性的外力”刺激了用户在线购物,也倒逼传统零售业态加速数字化运营,创新消费方式,提升服务标准。

image.png

随着消费者的聚焦点和消费习惯的改变,市场出现一片危险又充满机遇的蓝海,转型线上、数字化运营对传统零售业而言充满诱惑。企业要抓住一时的流量,更要长线布局零售场景,细分客群,升级产品,整合全渠道,精准营销,真正做到千人千面。

行业面临洗牌,数据运营在零售业的价值凸显

疫情的来临毫无疑问对零售业是一次地毯式洗牌,中小型腰部尾部企业供应链断裂,产能出清,大型巨头企业整合资源加速发展,“强者愈强,弱者愈弱”的马太效应成为一个普遍规律。

而现阶段零售企业面临着内部和外部多重压力,如何提供更好的产品和服务,怎样提升消费者体验和优化业务流程是零售企业在转型期面临的主要问题。零售企业需要以洞察用户为抓手,驱动企业经营各环节降本提效,同时以数据为依托,盘活全量数据,支持业务创新。

数据赋能,辅助渡劫

零售业作为劳动密集型企业,在后端的履约过程中,除了确保商品货物充足以外,还需确保人员充足。企业可以通过BI产品快速拖拉拽,生成调查问卷了解员工的身体状况和复工情况,并在后端即时监控员工的状态,分配劳动力,补充劳动力。

image.png

转为危机,化险为夷

此次疫情推动消费者进入移动互联的新世代,用户重度在线化和深度数字化,成为共通认知。消费者的注意力分配、渠道切换、需求释放、互动能力等数据都发生了变化。面对一盘棋的消费者,我们要及时通过数据分析,将真正的消费者识别出来、定义出来并数字化出来,精细化分层,及时跟进线上渠道,形成客户画像,深度分析如何触达客户。根据客户的忠诚度、贡献度,跟踪客户情况并激活客户。

image.png

转战线上,引流线下

零售企业可利用原有品牌资源发展线上业务,从品牌资源、客户资源、门店资源、供应链资源、运营资源等5个方面寻求线上线下协同,以在线零售业务作为新的渠道支持线下业务。这样一来,线上线下渠道可以充分共享已有客户资源,提供更多增值服务,满足网络时代用户对渠道的多样化诉求,同时将线上线下的会员体系进行对接,提供融合的服务体验,进行个性化跟进。

image.png

数据监控,保障供应

数字化供应链将成为零售业的主流,通过数据和算法决策对不同应用场景中产生的海量数据进行数字建模,以提供更加精准的铺货、补货、调货决策。通过供应方式的决策(供应时间、数量、周期),使得库存既可以最大化满足用户需求,又能将库存周转时间控制在一定范围内,降低企业库存风险。

image.png

三、零售行业如何搭建数据模型,进行数据运营?

image.png

BI产品轻松助力门店管理

商品分析实现利益最大化

细分客户群体,实现精准化运营

财务管理驱动企业发展

人员分析提高管理能力

17年前,非典爆发,低渗透产业骤然加速,线上交易崛起,成就了阿里巴巴、京东等电商航母;17年后,零售业同样可以充满期待。未来时代的经济巨头将在这场疫情中经受历练,涅槃新生。

这篇关于Smartbi:新消费拐点来临,零售业数据化运营势在必行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278548

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者