使用 Redis 如何统计一亿个 keys ?

2023-10-24 23:15
文章标签 统计 使用 redis keys 亿个

本文主要是介绍使用 Redis 如何统计一亿个 keys ?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、聚合统计

2、排序统计

3、二值状态统计

4、基数统计

总结


// 淡泊明志,宁静致远

        在 Web 和移动应用的业务场景中,我们经常需要保存这样一种信息:一个 key 对应了一个数据集合。举几个例子:

  • 手机 App 中的每天的用户登录信息:一天对应一系列用户 ID 或移动设备 ID;
  • 电商网站上商品的用户评论列表:一个商品对应了一系列的评论;
  • 用户在手机 App 上的签到打卡信息:一天对应一系列用户的签到记录;
  • 应用网站上的网页访问信息:一个网页对应一系列的访问点击。

        我们知道,Redis 集合类型的特点就是一个键对应一系列的数据,所以非常适合用来存取这些数据。但是,在这些场景中,除了记录信息,我们往往还需要对集合中的数据进行统计,例如:

  • 在移动应用中,需要统计每天的新增用户数和第二天的留存用户数;
  • 在电商网站的商品评论中,需要统计评论列表中的最新评论;
  • 在签到打卡中,需要统计一个月内连续打卡的用户数;
  • 在网页访问记录中,需要统计独立访客(Unique Visitor,UV)量。

        通常情况下,我们面临的用户数量以及访问量都是巨大的,比如百万、千万级别的用户数量,或者千万级别、甚至亿级别的访问信息。所以,我们必须要选择能够非常高效地统计大量数据(例如亿级)的集合类型。// 获取缓存,然后通过程序对亿级数据进行聚合的想法,不切实际?

        要想选择合适的集合,我们就得了解常用的集合统计模式。集合类型常见的四种统计模式,包括聚合统计、排序统计、二值状态统计基数统计

1、聚合统计

        所谓的聚合统计,就是指统计多个集合元素的聚合结果,包括:统计多个集合的共有元素(交集统计);把两个集合相比,统计其中一个集合独有的元素(差集统计);统计多个集合的所有元素(并集统计)。// 交、差、并、补

        在刚才提到的场景中,统计手机 App 每天的新增用户数和第二天的留存用户数,正好对应了聚合统计。// 使用set 集合,避免数据重复

        要完成这个统计任务,我们可以用一个集合记录所有登录过 App 的用户 ID,同时,用另一个集合记录每一天登录过 App 的用户 ID。然后,再对这两个集合做聚合统计。我们来看下具体的操作。

        记录所有登录过 App 的用户 ID 还是比较简单的,我们可以直接使用 Set 类型,把 key 设置为 user:id,表示记录的是用户 ID,value 就是一个 Set 集合,里面是所有登录过 App 的用户 ID,我们可以把这个 Set 叫作累计用户 Set,如下图所示:

        需要注意的是,累计用户 Set 中没有日期信息,我们是不能直接统计每天的新增用户的。所以,我们还需要把每一天登录的用户 ID,记录到一个新集合中,我们把这个集合叫作每日用户 Set,它有两个特点:

  1. key 是 user:id 以及当天日期,例如 user:id:20200803;
  2. value 是 Set 集合,记录当天登录的用户 ID。

        在统计每天的新增用户时,我们只用计算每日用户 Set 和累计用户 Set 的差集就行。 

        借助一个具体的例子来解释一下。

        假设我们的手机 App 在 2020 年 8 月 3 日上线,那么,8 月 3 日前是没有用户的。此时,累计用户 Set 是空集,当天登录的用户 ID 会被记录到 key 为 user:id:20200803 的 Set 中。所以,user:id:20200803 这个 Set 中的用户就是当天的新增用户。// 新增集合和累计集合分开

        然后,我们计算累计用户 Set 和 user:id:20200803 Set 的并集结果,结果保存在 user:id 这个累计用户 Set 中,如下所示 // user:id 和 user:id:20200803 并集

// Sunionstore 命令将给定集合的并集存储在指定的集合 destination 中。
// SUNIONSTORE destination key [key ...]
SUNIONSTORE  user:id  user:id  user:id:20200803 

        此时,user:id 这个累计用户 Set 中就有了 8 月 3 日的用户 ID。等到 8 月 4 日再统计时,我们把 8 月 4 日登录的用户 ID 记录到 user:id:20200804 的 Set 中。接下来,我们执行 SDIFFSTORE 命令计算累计用户 Set 和 user:id:20200804 Set 的差集,结果保存在 key 为 user:new 的 Set 中,如下所示:// 累计用户 Set 和 user:id:20200804 Set 的差集 ->统计新增用户

SDIFFSTORE  user:new  user:id:20200804 user:id  

        可以看到,这个差集中的用户 ID 在 user:id:20200804 的 Set 中存在,但是不在累计用户 Set 中。所以,user:new 这个 Set 中记录的就是 8 月 4 日的新增用户。

        当要计算 8 月 4 日的留存用户时,我们只需要再计算 user:id:20200803 和 user:id:20200804 两个 Set 的交集,就可以得到同时在这两个集合中的用户 ID 了,这些就是在 8 月 3 日登录,并且在 8 月 4 日留存的用户。执行的命令如下:// 使用交集统计留存用户

SINTERSTORE user:id:rem user:id:20200803 user:id:20200804

        当你需要对多个集合进行聚合计算时,Set 类型会是一个非常不错的选择。不过,需要注意的是,这里有一个潜在的风险。

        Set 的差集、并集和交集的计算复杂度较高,在数据量较大的情况下,如果直接执行这些计算,会导致 Redis 实例阻塞。所以,建议从主从集群中选择一个从库,让它专门负责聚合计算,或者是把数据读取到客户端,在客户端来完成聚合统计,这样就可以规避阻塞主库实例和其他从库实例的风险了。

2、排序统计

        接下来,分析下应对集合元素排序需求的方法。以在电商网站上提供最新评论列表的场景为例。

        最新评论列表包含了所有评论中的最新留言,这就要求集合类型能对元素保序,也就是说,集合中的元素可以按序排列,这种对元素保序的集合类型叫作有序集合。

        在 Redis 常用的 4 个集合类型中(List、Hash、Set、Sorted Set),List 和 Sorted Set 就属于有序集合。

        List 是按照元素进入 List 的顺序进行排序的,而 Sorted Set 可以根据元素的权重来排序,我们可以自己来决定每个元素的权重值。比如说,我们可以根据元素插入 Sorted Set 的时间确定权重值,先插入的元素权重小,后插入的元素权重大。// 也就是说 Sorted Set 排序需要人为干涉

        看起来好像都可以满足需求,我们该怎么选择呢?

        我先说说用 List 的情况。每个商品对应一个 List,这个 List 包含了对这个商品的所有评论,而且会按照评论时间保存这些评论,每来一个新评论,就用 LPUSH 命令把它插入 List 的队头。

        在只有一页评论的时候,我们可以很清晰地看到最新的评论,但是,在实际应用中,网站一般会分页显示最新的评论列表,一旦涉及到分页操作,List 就可能会出现问题了。

        假设当前的评论 List 是{A, B, C, D, E, F}(其中,A 是最新的评论,以此类推,F 是最早的评论),在展示第一页的 3 个评论时,我们可以用下面的命令,得到最新的三条评论 A、B、C:

// Redis Lrange 返回列表中指定区间内的元素,区间以偏移量 START 和 END 指定。
LRANGE product1 0 2
1) "A"
2) "B"
3) "C"

        然后,再用下面的命令获取第二页的 3 个评论,也就是 D、E、F。

LRANGE product1 3 5
1) "D"
2) "E"
3) "F"

        但是,如果在展示第二页前,又产生了一个新评论 G,评论 G 就会被 LPUSH 命令插入到评论 List 的队头,评论 List 就变成了{G, A, B, C, D, E, F}。此时,再用刚才的命令获取第二页评论时,就会发现,评论 C 又被展示出来了,也就是 C、D、E。// 新的数据出现会打乱之前的排序

LRANGE product1 3 5
1) "C"
2) "D"
3) "E"

        之所以会这样,关键原因就在于,List 是通过元素在 List 中的位置来排序的,当有一个新元素插入时,原先的元素在 List 中的位置都后移了一位,比如说原来在第 1 位的元素现在排在了第 2 位。所以,对比新元素插入前后,List 相同位置上的元素就会发生变化,用 LRANGE 读取时,就会读到旧元素。

        和 List 相比,Sorted Set 就不存在这个问题,因为它是根据元素的实际权重来排序和获取数据的

        我们可以按评论时间的先后给每条评论设置一个权重值,然后再把评论保存到 Sorted Set 中。Sorted Set 的 ZRANGEBYSCORE 命令就可以按权重排序后返回元素。这样的话,即使集合中的元素频繁更新,Sorted Set 也能通过 ZRANGEBYSCORE 命令准确地获取到按序排列的数据。// 假设当前的评论 List 是{A, B, C, D, E, F}(其中,A 是最新的评论,以此类推,F 是最早的评论,权重分别为 10,9,8,7,6,5)。 在展示第一页的 3 个评论时,按照权重排序,查出 ABC。 展示第二页的 3 个评论时,按照权重排序,查出 DEF。 如果在展示第二页前,又产生了一个新评论 G,权重为 11,排序为 {G, A, B, C, D, E, F}。 再次查询第二页数据时,权重还是会以 10 为准,逻辑上,第一页的权重还是 10,9,8。 查询第二页数据时,可以查询出权重等于 7,6,5 的数据,返回评论 DEF。 当想查询出最新评论时,需要以权重 11 为准,第一页数据的权重就是 11,10,9,返回评论 GAB。 再次查询第二页数据时,以权重 11 为准,查询出评论 CDE。

        假设越新的评论权重越大,目前最新评论的权重是 N,我们执行下面的命令时,就可以获得最新的 10 条评论:

ZRANGEBYSCORE comments N-9 N

        所以,在面对需要展示最新列表、排行榜等场景时,如果数据更新频繁或者需要分页显示,建议你优先考虑使用 Sorted Set。

3、二值状态统计

        现在,我们再来分析下第三个场景:二值状态统计。这里的二值状态就是指集合元素的取值就只有 0 和 1 两种。在签到打卡的场景中,我们只用记录签到(1)或未签到(0),所以它就是非常典型的二值状态。

        在签到统计时,每个用户一天的签到用 1 个 bit 位就能表示,一个月(假设是 31 天)的签到情况用 31 个 bit 位就可以,而一年的签到也只需要用 365 个 bit 位,根本不用太复杂的集合类型。这个时候,我们就可以选择 Bitmap。这是 Redis 提供的扩展数据类型。下边分析一下它的实现原理。

        Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态。可以把 Bitmap 看作是一个 bit 数组。

        Bitmap 提供了 GETBIT/SETBIT 操作,使用一个偏移值 offset 对 bit 数组的某一个 bit 位进行读和写。不过,需要注意的是,Bitmap 的偏移量是从 0 开始算的,也就是说 offset 的最小值是 0。当使用 SETBIT 对一个 bit 位进行写操作时,这个 bit 位会被设置为 1。Bitmap 还提供了 BITCOUNT 操作,用来统计这个 bit 数组中所有“1”的个数。

        那么,具体该怎么用 Bitmap 进行签到统计呢?举一个具体的例子来说明。

        假设我们要统计 ID 3000 的用户在 2020 年 8 月份的签到情况,就可以按照下面的步骤进行操作。

        第一步,执行下面的命令,记录该用户 8 月 3 号已签到。

// Setbit KEY_NAME OFFSET, 把 OFFSET 为 2 处的值设置为 1
SETBIT uid:sign:3000:202008 2 1 

        第二步,检查该用户 8 月 3 日是否签到。

GETBIT uid:sign:3000:202008 2 

        第三步,统计该用户在 8 月份的签到次数。

BITCOUNT uid:sign:3000:202008

        这样,我们就知道该用户在 8 月份的签到情况了,是不是很简单呢?接下来,你可以再思考一个问题:如果记录了 1 亿个用户 10 天的签到情况,你有办法统计出这 10 天连续签到的用户总数吗?

        在介绍具体的方法之前,我们要先知道,Bitmap 支持用 BITOP 命令对多个 Bitmap 按位做“与”“或”“异或”的操作,操作的结果会保存到一个新的 Bitmap 中。// 二值运算:“与”“或”“异或”

        我以按位“与”操作为例来具体解释一下。从下图中,可以看到,三个 Bitmap bm1、bm2 和 bm3,对应 bit 位做“与”操作,结果保存到了一个新的 Bitmap 中(示例中,这个结果 Bitmap 的 key 被设为“resmap”)。

        回到刚刚的问题,在统计 1 亿个用户连续 10 天的签到情况时,你可以把每天的日期作为 key,每个 key 对应一个 1 亿位的 Bitmap,每一个 bit 对应一个用户当天的签到情况。

        接下来,我们对 10 个 Bitmap 做“与”操作,得到的结果也是一个 Bitmap。在这个 Bitmap 中,只有 10 天都签到的用户对应的 bit 位上的值才会是 1。最后,我们可以用 BITCOUNT 统计下 Bitmap 中的 1 的个数,这就是连续签到 10 天的用户总数了。// 有点像并查集

        现在,我们可以计算一下记录了 10 天签到情况后的内存开销。每天使用 1 个 1 亿位的 Bitmap,大约占 12MB 的内存(10^8/8/1024/1024),10 天的 Bitmap 的内存开销约为 120MB,内存压力不算太大。不过,在实际应用时,最好对 Bitmap 设置过期时间,让 Redis 自动删除不再需要的签到记录,以节省内存开销。

        所以,如果只需要统计数据的二值状态,例如商品有没有、用户在不在等,就可以使用 Bitmap,因为它只用一个 bit 位就能表示 0 或 1。在记录海量数据时,Bitmap 能够有效地节省内存空间

4、基数统计

        基数统计就是指统计一个集合中不重复的元素个数。对应到我们刚才介绍的场景中,就是统计网页的 UV。

        网页 UV 的统计有个独特的地方,就是需要去重,一个用户一天内的多次访问只能算作一次。在 Redis 的集合类型中,Set 类型默认支持去重,所以看到有去重需求时,我们可能第一时间就会想到用 Set 类型。

        我们来结合一个例子看一看用 Set 的情况。

        有一个用户 user1 访问 page1 时,你把这个信息加到 Set 中:

SADD page1:uv user1

        用户 1 再来访问时,Set 的去重功能就保证了不会重复记录用户 1 的访问次数,这样,用户 1 就算是一个独立访客。当你需要统计 UV 时,可以直接用 SCARD 命令,这个命令会返回一个集合中的元素个数。

        但是,如果 page1 非常火爆,UV 达到了千万,这个时候,一个 Set 就要记录千万个用户 ID。对于一个搞大促的电商网站而言,这样的页面可能有成千上万个,如果每个页面都用这样的一个 Set,就会消耗很大的内存空间

        当然,你也可以用 Hash 类型记录 UV。// Hash 一样占内存

        例如,你可以把用户 ID 作为 Hash 集合的 key,当用户访问页面时,就用 HSET 命令(用于设置 Hash 集合元素的值),对这个用户 ID 记录一个值“1”,表示一个独立访客,用户 1 访问 page1 后,我们就记录为 1 个独立访客,如下所示:

HSET page1:uv user1 1

        即使用户 1 多次访问页面,重复执行这个 HSET 命令,也只会把 user1 的值设置为 1,仍然只记为 1 个独立访客。当要统计 UV 时,我们可以用 HLEN 命令统计 Hash 集合中的所有元素个数。

        但是,和 Set 类型相似,当页面很多时,Hash 类型也会消耗很大的内存空间。那么,有什么办法既能完成统计,还能节省内存吗?

        这时候,就要用到 Redis 提供的 HyperLogLog 了。// 专门用来做基数统计

        HyperLogLog 是一种用于统计基数的数据集合类型,它的最大优势就在于,当集合元素数量非常多时,它计算基数所需的空间总是固定的,而且还很小

        在 Redis 中,每个 HyperLogLog 只需要花费 12 KB 内存,就可以计算接近 2^64 个元素的基数。你看,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。

        在统计 UV 时,你可以用 PFADD 命令(用于向 HyperLogLog 中添加新元素)把访问页面的每个用户都添加到 HyperLogLog 中。

PFADD page1:uv user1 user2 user3 user4 user5

        接下来,就可以用 PFCOUNT 命令直接获得 page1 的 UV 值了,这个命令的作用就是返回 HyperLogLog 的统计结果。

PFCOUNT page1:uv

        不过,需要注意的是,HyperLogLog 的统计规则是基于概率完成的,所以它给出的统计结果是有一定误差的,标准误算率是 0.81%。这也就意味着,你使用 HyperLogLog 统计的 UV 是 100 万,但实际的 UV 可能是 101 万。虽然误差率不算大,但是,如果你需要精确统计结果的话,最好还是继续用 Set 或 Hash 类型

总结

        redis 中 Set、Sorted Set、Hash、List、Bitmap、HyperLogLog 的支持情况和优缺点汇总

        可以看到,Set 和 Sorted Set 都支持多种聚合统计,不过,对于差集计算来说,只有 Set 支持。Bitmap 也能做多个 Bitmap 间的聚合计算,包括与、或和异或操作。

        当需要进行排序统计时,List 中的元素虽然有序,但是一旦有新元素插入,原来的元素在 List 中的位置就会移动,那么,按位置读取的排序结果可能就不准确了。而 Sorted Set 本身是按照集合元素的权重排序,可以准确地按序获取结果,所以建议优先使用它。

        如果我们记录的数据只有 0 和 1 两个值的状态,Bitmap 会是一个很好的选择,这主要归功于 Bitmap 对于一个数据只用 1 个 bit 记录,可以节省内存。

        对于基数统计来说,如果集合元素量达到亿级别而且不需要精确统计时,建议使用 HyperLogLog。

        当然,Redis 的应用场景非常多,这张表中的总结不能覆盖到所有场景。所以也试着自己去画一张表,把遇到的其他场景添加进去。长久积累下来,一定能够更加灵活地把集合类型应用到合适的实践项目中。

        // 多总结多思考,经验也是重要的知识

这篇关于使用 Redis 如何统计一亿个 keys ?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278416

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

mac安装redis全过程

《mac安装redis全过程》文章内容主要介绍了如何从官网下载指定版本的Redis,以及如何在自定义目录下安装和启动Redis,还提到了如何修改Redis的密码和配置文件,以及使用RedisInsig... 目录MAC安装Redis安装启动redis 配置redis 常用命令总结mac安装redis官网下

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功