吴恩达week5 lesson1学习笔记

2023-10-24 22:59

本文主要是介绍吴恩达week5 lesson1学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从最基础的RNN开始

在这里插入图片描述
这里一个方框是一个cell,公式是在这里插入图片描述

对应手动实现代码是

注意这里是dot点积,还需要注意各个维度的含义
n_x:输入向量的维度
m:batch_size
T_x:时间序列长度
这边是(n_x,m,T_x)到了pytorch模型那边不一样

def rnn_cell_forward(xt, a_prev, parameters):a_next=np.tanh(np.dot(parameters["Wax"],xt)+np.dot(parameters["Waa"],a_prev)+parameters["ba"])yt_pred=softmax(np.dot(parameters["Wya"],a_next)+parameters["by"])cache=(a_next,a_prev,xt,parameters)return a_next,yt_pred,cachedef rnn_forward(x,a0,parameters):cacahes=[]n_x,m,T_x=x.shapen_y,n_a=parameters["Wya"].shapea=np.zeros((n_a,m,T_x))y_pred=np.zeros((n_y,m,T_x))a_next=a0for t in range(T_x):a_next,yt_pred,cache=rnn_cell_forward(x[:,:,t],a_next,parameters)a[:,:,t]=a_nexty_pred[:,:,t]=yt_predcaches.append(cache)cacahes=(caches,x)return a,y_pred,caches

对应的pytorch代码是

x shape (T_x,m,n_x) 如果batch_first=True 那么变成(m,T_x,n_x)
这边的nn.RNN直接完成的是上面整个图而不是单个细胞
在调用rnn_layer时,会把每个输出y和最新的隐藏层状态都记录下来 最后的h是最后时刻的hidden_state

import torch
from torch import nn
vocab_size=10000
num_hiddens=10
rnn_layer = nn.RNN(input_size=vocab_size,hidden_size=num_hiddens,batch_first=True)
num_steps = 4
batch_size = 5
state = None    # 初始隐藏层状态可以不定义
X = torch.rand(batch_size,num_steps,vocab_size)# Y shape (batch, time_step, output_size)
# state_new shape (n_layers, batch, hidden_size)Y, state_new = rnn_layer(X, state)
print(Y.shape,state_new.shape)

Y的shape是torch.Size([1, 4, 10]) state_new的shape是 torch.Size([1, 5, 10])

题外补充nn.RNN

nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False)
输入X :shape (T_x,m,n_x)
输出Y和state_new :
Y shape (batch, time_step, output_size)
state_new shape (n_layers, batch, hidden_size)

LSTM在这里插入图片描述

LSTM就是细胞内部结构更加复杂,多了3个门,而且隐藏层状态a不等于c

下面举个具体例子加深对各参数维度理解
每次输入64张 28*28的图片 每个时间步对一行28个像素点进行计算,一共28个时间步

单拿出来r_out, (h_n, h_c) = self.rnn(x, None)
每次会把当前的x一行和隐藏层状态传给下一个细胞进行forward

class RNN(nn.Module):def __init__(self):super(RNN, self).__init__()self.rnn = nn.LSTM(         # if use nn.RNN(), it hardly learnsinput_size=INPUT_SIZE,  #每个时间点input28个像素点hidden_size=128,         # rnn hidden unitnum_layers=1,           # number of rnn layerbatch_first=True,       # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size) 如果是false(time_step, batch, input_size))self.out = nn.Linear(128, 10) #隐藏层n_a和n_y原本都是64,现在我们希望y输出10个维度def forward(self, x):# x shape (batch, time_step, input_size)# r_out shape (batch, time_step, output_size)# h_n shape (n_layers, batch, hidden_size)# h_c shape (n_layers, batch, hidden_size)r_out, (h_n, h_c) = self.rnn(x, None)   # None represents zero initial hidden state# choose r_out at the last time stepout = self.out(r_out[:, -1, :])return out

再举新闻文本分类的例子

假设句子长度固定为32,多退少补,词向量长度为300
这里面会有两张表 词表(每个词对应一个下标)和embedding表(10000✖️300 将词转换为词向量)
将每句话中的每个词查到下标之后(1✖️32)进行embeding(300✖️32)

在这里插入图片描述

梯度修剪(防止梯度爆炸)

def clip(gradients, maxValue):'''Clips the gradients' values between minimum and maximum.Arguments:gradients -- a dictionary containing the gradients "dWaa", "dWax", "dWya", "db", "dby"maxValue -- everything above this number is set to this number, and everything less than -maxValue is set to -maxValueReturns: gradients -- a dictionary with the clipped gradients.'''dWaa, dWax, dWya, db, dby = gradients['dWaa'], gradients['dWax'], gradients['dWya'], gradients['db'], gradients['dby']### START CODE HERE #### clip to mitigate exploding gradients, loop over [dWax, dWaa, dWya, db, dby]. (≈2 lines)for gradient in [dWax, dWaa, dWya, db, dby]:np.clip(gradient,-maxValue , maxValue, out=gradient)### END CODE HERE ###gradients = {"dWaa": dWaa, "dWax": dWax, "dWya": dWya, "db": db, "dby": dby}return gradients

采样

采样就是利用训练好的参数生成新的数据

def sample(parameters, char_to_ix, seed):"""Sample a sequence of characters according to a sequence of probability distributions output of the RNNArguments:parameters -- python dictionary containing the parameters Waa, Wax, Wya, by, and b. char_to_ix -- python dictionary mapping each character to an index.seed -- used for grading purposes. Do not worry about it.Returns:indices -- a list of length n containing the indices of the sampled characters."""# Retrieve parameters and relevant shapes from "parameters" dictionaryWaa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']vocab_size = by.shape[0]n_a = Waa.shape[1]### START CODE HERE #### Step 1: Create the one-hot vector x for the first character (initializing the sequence generation). (≈1 line)x = np.zeros((vocab_size,1))# Step 1': Initialize a_prev as zeros (≈1 line)a_prev = np.zeros((n_a,1))# Create an empty list of indices, this is the list which will contain the list of indices of the characters to generate (≈1 line)indices = []# Idx is a flag to detect a newline character, we initialize it to -1idx = -1 # Loop over time-steps t. At each time-step, sample a character from a probability distribution and append # its index to "indices". We'll stop if we reach 50 characters (which should be very unlikely with a well # trained model), which helps debugging and prevents entering an infinite loop. counter = 0newline_character = char_to_ix['\n']while (idx != newline_character and counter != 50):# Step 2: Forward propagate x using the equations (1), (2) and (3)a = np.tanh(np.dot(Wax,x)+np.dot(Waa,a_prev)+b)z = np.dot(Wya,a)+byy = softmax(z)# for grading purposesnp.random.seed(counter+seed) # Step 3: Sample the index of a character within the vocabulary from the probability distribution yidx = np.random.choice(range(len(y)),p=y.ravel())# Append the index to "indices"indices.append(idx)# Step 4: Overwrite the input character as the one corresponding to the sampled index.x = np.zeros((vocab_size,1))x[idx] = 1# Update "a_prev" to be "a"a_prev = a# for grading purposesseed += 1counter +=1### END CODE HERE ###if (counter == 50):indices.append(char_to_ix['\n'])return indices 

训练一次参数的过程

这边用Y是X的下一时刻,用于rnn_forward的时候和y_hat计算loss

def optimize(X, Y, a_prev, parameters, learning_rate = 0.01):"""Execute one step of the optimization to train the model.Arguments:X -- list of integers, where each integer is a number that maps to a character in the vocabulary.Y -- list of integers, exactly the same as X but shifted one index to the left.a_prev -- previous hidden state.parameters -- python dictionary containing:Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)b --  Bias, numpy array of shape (n_a, 1)by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)learning_rate -- learning rate for the model.Returns:loss -- value of the loss function (cross-entropy)gradients -- python dictionary containing:dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)dWya -- Gradients of hidden-to-output weights, of shape (n_y, n_a)db -- Gradients of bias vector, of shape (n_a, 1)dby -- Gradients of output bias vector, of shape (n_y, 1)a[len(X)-1] -- the last hidden state, of shape (n_a, 1)"""### START CODE HERE #### Forward propagate through time (≈1 line)loss, cache = rnn_forward(X,Y,a_prev,parameters)# Backpropagate through time (≈1 line)gradients, a = rnn_backward(X,Y,parameters,cache)# Clip your gradients between -5 (min) and 5 (max) (≈1 line)gradients = clip(gradients,5)# Update parameters (≈1 line)parameters = update_parameters(parameters,gradients,learning_rate)### END CODE HERE ###return loss, gradients, a[len(X)-1]

整个模型

每2000次用当前的parameters进行一次采样 生成新的词

def model(data, ix_to_char, char_to_ix, num_iterations = 35000, n_a = 50, dino_names = 7, vocab_size = 27):"""Trains the model and generates dinosaur names. Arguments:data -- text corpusix_to_char -- dictionary that maps the index to a characterchar_to_ix -- dictionary that maps a character to an indexnum_iterations -- number of iterations to train the model forn_a -- number of units of the RNN celldino_names -- number of dinosaur names you want to sample at each iteration. vocab_size -- number of unique characters found in the text, size of the vocabularyReturns:parameters -- learned parameters"""# Retrieve n_x and n_y from vocab_sizen_x, n_y = vocab_size, vocab_size# Initialize parametersparameters = initialize_parameters(n_a, n_x, n_y)# Initialize loss (this is required because we want to smooth our loss, don't worry about it)loss = get_initial_loss(vocab_size, dino_names)# Build list of all dinosaur names (training examples).with open("dinos.txt") as f:examples = f.readlines()examples = [x.lower().strip() for x in examples]# Shuffle list of all dinosaur namesshuffle(examples)# Initialize the hidden state of your LSTMa_prev = np.zeros((n_a, 1))# Optimization loopfor j in range(num_iterations):### START CODE HERE #### Use the hint above to define one training example (X,Y) (≈ 2 lines)index = j%len(examples)X = [None] + [char_to_ix[ch] for ch in examples[index]]Y = X[1:] + [char_to_ix["\n"]]# Perform one optimization step: Forward-prop -> Backward-prop -> Clip -> Update parameters# Choose a learning rate of 0.01curr_loss, gradients, a_prev = optimize(X,Y,a_prev,parameters,learning_rate=0.01)  ### END CODE HERE #### Use a latency trick to keep the loss smooth. It happens here to accelerate the training.loss = smooth(loss, curr_loss)# Every 2000 Iteration, generate "n" characters thanks to sample() to check if the model is learning properlyif j % 2000 == 0:print('Iteration: %d, Loss: %f' % (j, loss) + '\n')# The number of dinosaur names to printseed = 0for name in range(dino_names):# Sample indices and print themsampled_indices = sample(parameters, char_to_ix, seed)print_sample(sampled_indices, ix_to_char)seed += 1  # To get the same result for grading purposed, increment the seed by one. print('\n')return parameters

这篇关于吴恩达week5 lesson1学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278353

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在