本文主要是介绍吴恩达week5 lesson1学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
从最基础的RNN开始
这里一个方框是一个cell,公式是
对应手动实现代码是
注意这里是dot点积,还需要注意各个维度的含义
n_x:输入向量的维度
m:batch_size
T_x:时间序列长度
这边是(n_x,m,T_x)到了pytorch模型那边不一样
def rnn_cell_forward(xt, a_prev, parameters):a_next=np.tanh(np.dot(parameters["Wax"],xt)+np.dot(parameters["Waa"],a_prev)+parameters["ba"])yt_pred=softmax(np.dot(parameters["Wya"],a_next)+parameters["by"])cache=(a_next,a_prev,xt,parameters)return a_next,yt_pred,cachedef rnn_forward(x,a0,parameters):cacahes=[]n_x,m,T_x=x.shapen_y,n_a=parameters["Wya"].shapea=np.zeros((n_a,m,T_x))y_pred=np.zeros((n_y,m,T_x))a_next=a0for t in range(T_x):a_next,yt_pred,cache=rnn_cell_forward(x[:,:,t],a_next,parameters)a[:,:,t]=a_nexty_pred[:,:,t]=yt_predcaches.append(cache)cacahes=(caches,x)return a,y_pred,caches
对应的pytorch代码是
x shape (T_x,m,n_x) 如果batch_first=True 那么变成(m,T_x,n_x)
这边的nn.RNN直接完成的是上面整个图而不是单个细胞
在调用rnn_layer时,会把每个输出y和最新的隐藏层状态都记录下来 最后的h是最后时刻的hidden_state
import torch
from torch import nn
vocab_size=10000
num_hiddens=10
rnn_layer = nn.RNN(input_size=vocab_size,hidden_size=num_hiddens,batch_first=True)
num_steps = 4
batch_size = 5
state = None # 初始隐藏层状态可以不定义
X = torch.rand(batch_size,num_steps,vocab_size)# Y shape (batch, time_step, output_size)
# state_new shape (n_layers, batch, hidden_size)Y, state_new = rnn_layer(X, state)
print(Y.shape,state_new.shape)
Y的shape是torch.Size([1, 4, 10]) state_new的shape是 torch.Size([1, 5, 10])
题外补充nn.RNN
nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False)
输入X :shape (T_x,m,n_x)
输出Y和state_new :
Y shape (batch, time_step, output_size)
state_new shape (n_layers, batch, hidden_size)
LSTM
LSTM就是细胞内部结构更加复杂,多了3个门,而且隐藏层状态a不等于c
下面举个具体例子加深对各参数维度理解
每次输入64张 28*28的图片 每个时间步对一行28个像素点进行计算,一共28个时间步
单拿出来r_out, (h_n, h_c) = self.rnn(x, None)
每次会把当前的x一行和隐藏层状态传给下一个细胞进行forward
class RNN(nn.Module):def __init__(self):super(RNN, self).__init__()self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learnsinput_size=INPUT_SIZE, #每个时间点input28个像素点hidden_size=128, # rnn hidden unitnum_layers=1, # number of rnn layerbatch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size) 如果是false(time_step, batch, input_size))self.out = nn.Linear(128, 10) #隐藏层n_a和n_y原本都是64,现在我们希望y输出10个维度def forward(self, x):# x shape (batch, time_step, input_size)# r_out shape (batch, time_step, output_size)# h_n shape (n_layers, batch, hidden_size)# h_c shape (n_layers, batch, hidden_size)r_out, (h_n, h_c) = self.rnn(x, None) # None represents zero initial hidden state# choose r_out at the last time stepout = self.out(r_out[:, -1, :])return out
再举新闻文本分类的例子
假设句子长度固定为32,多退少补,词向量长度为300
这里面会有两张表 词表(每个词对应一个下标)和embedding表(10000✖️300 将词转换为词向量)
将每句话中的每个词查到下标之后(1✖️32)进行embeding(300✖️32)
梯度修剪(防止梯度爆炸)
def clip(gradients, maxValue):'''Clips the gradients' values between minimum and maximum.Arguments:gradients -- a dictionary containing the gradients "dWaa", "dWax", "dWya", "db", "dby"maxValue -- everything above this number is set to this number, and everything less than -maxValue is set to -maxValueReturns: gradients -- a dictionary with the clipped gradients.'''dWaa, dWax, dWya, db, dby = gradients['dWaa'], gradients['dWax'], gradients['dWya'], gradients['db'], gradients['dby']### START CODE HERE #### clip to mitigate exploding gradients, loop over [dWax, dWaa, dWya, db, dby]. (≈2 lines)for gradient in [dWax, dWaa, dWya, db, dby]:np.clip(gradient,-maxValue , maxValue, out=gradient)### END CODE HERE ###gradients = {"dWaa": dWaa, "dWax": dWax, "dWya": dWya, "db": db, "dby": dby}return gradients
采样
采样就是利用训练好的参数生成新的数据
def sample(parameters, char_to_ix, seed):"""Sample a sequence of characters according to a sequence of probability distributions output of the RNNArguments:parameters -- python dictionary containing the parameters Waa, Wax, Wya, by, and b. char_to_ix -- python dictionary mapping each character to an index.seed -- used for grading purposes. Do not worry about it.Returns:indices -- a list of length n containing the indices of the sampled characters."""# Retrieve parameters and relevant shapes from "parameters" dictionaryWaa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']vocab_size = by.shape[0]n_a = Waa.shape[1]### START CODE HERE #### Step 1: Create the one-hot vector x for the first character (initializing the sequence generation). (≈1 line)x = np.zeros((vocab_size,1))# Step 1': Initialize a_prev as zeros (≈1 line)a_prev = np.zeros((n_a,1))# Create an empty list of indices, this is the list which will contain the list of indices of the characters to generate (≈1 line)indices = []# Idx is a flag to detect a newline character, we initialize it to -1idx = -1 # Loop over time-steps t. At each time-step, sample a character from a probability distribution and append # its index to "indices". We'll stop if we reach 50 characters (which should be very unlikely with a well # trained model), which helps debugging and prevents entering an infinite loop. counter = 0newline_character = char_to_ix['\n']while (idx != newline_character and counter != 50):# Step 2: Forward propagate x using the equations (1), (2) and (3)a = np.tanh(np.dot(Wax,x)+np.dot(Waa,a_prev)+b)z = np.dot(Wya,a)+byy = softmax(z)# for grading purposesnp.random.seed(counter+seed) # Step 3: Sample the index of a character within the vocabulary from the probability distribution yidx = np.random.choice(range(len(y)),p=y.ravel())# Append the index to "indices"indices.append(idx)# Step 4: Overwrite the input character as the one corresponding to the sampled index.x = np.zeros((vocab_size,1))x[idx] = 1# Update "a_prev" to be "a"a_prev = a# for grading purposesseed += 1counter +=1### END CODE HERE ###if (counter == 50):indices.append(char_to_ix['\n'])return indices
训练一次参数的过程
这边用Y是X的下一时刻,用于rnn_forward的时候和y_hat计算loss
def optimize(X, Y, a_prev, parameters, learning_rate = 0.01):"""Execute one step of the optimization to train the model.Arguments:X -- list of integers, where each integer is a number that maps to a character in the vocabulary.Y -- list of integers, exactly the same as X but shifted one index to the left.a_prev -- previous hidden state.parameters -- python dictionary containing:Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)b -- Bias, numpy array of shape (n_a, 1)by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)learning_rate -- learning rate for the model.Returns:loss -- value of the loss function (cross-entropy)gradients -- python dictionary containing:dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)dWya -- Gradients of hidden-to-output weights, of shape (n_y, n_a)db -- Gradients of bias vector, of shape (n_a, 1)dby -- Gradients of output bias vector, of shape (n_y, 1)a[len(X)-1] -- the last hidden state, of shape (n_a, 1)"""### START CODE HERE #### Forward propagate through time (≈1 line)loss, cache = rnn_forward(X,Y,a_prev,parameters)# Backpropagate through time (≈1 line)gradients, a = rnn_backward(X,Y,parameters,cache)# Clip your gradients between -5 (min) and 5 (max) (≈1 line)gradients = clip(gradients,5)# Update parameters (≈1 line)parameters = update_parameters(parameters,gradients,learning_rate)### END CODE HERE ###return loss, gradients, a[len(X)-1]
整个模型
每2000次用当前的parameters进行一次采样 生成新的词
def model(data, ix_to_char, char_to_ix, num_iterations = 35000, n_a = 50, dino_names = 7, vocab_size = 27):"""Trains the model and generates dinosaur names. Arguments:data -- text corpusix_to_char -- dictionary that maps the index to a characterchar_to_ix -- dictionary that maps a character to an indexnum_iterations -- number of iterations to train the model forn_a -- number of units of the RNN celldino_names -- number of dinosaur names you want to sample at each iteration. vocab_size -- number of unique characters found in the text, size of the vocabularyReturns:parameters -- learned parameters"""# Retrieve n_x and n_y from vocab_sizen_x, n_y = vocab_size, vocab_size# Initialize parametersparameters = initialize_parameters(n_a, n_x, n_y)# Initialize loss (this is required because we want to smooth our loss, don't worry about it)loss = get_initial_loss(vocab_size, dino_names)# Build list of all dinosaur names (training examples).with open("dinos.txt") as f:examples = f.readlines()examples = [x.lower().strip() for x in examples]# Shuffle list of all dinosaur namesshuffle(examples)# Initialize the hidden state of your LSTMa_prev = np.zeros((n_a, 1))# Optimization loopfor j in range(num_iterations):### START CODE HERE #### Use the hint above to define one training example (X,Y) (≈ 2 lines)index = j%len(examples)X = [None] + [char_to_ix[ch] for ch in examples[index]]Y = X[1:] + [char_to_ix["\n"]]# Perform one optimization step: Forward-prop -> Backward-prop -> Clip -> Update parameters# Choose a learning rate of 0.01curr_loss, gradients, a_prev = optimize(X,Y,a_prev,parameters,learning_rate=0.01) ### END CODE HERE #### Use a latency trick to keep the loss smooth. It happens here to accelerate the training.loss = smooth(loss, curr_loss)# Every 2000 Iteration, generate "n" characters thanks to sample() to check if the model is learning properlyif j % 2000 == 0:print('Iteration: %d, Loss: %f' % (j, loss) + '\n')# The number of dinosaur names to printseed = 0for name in range(dino_names):# Sample indices and print themsampled_indices = sample(parameters, char_to_ix, seed)print_sample(sampled_indices, ix_to_char)seed += 1 # To get the same result for grading purposed, increment the seed by one. print('\n')return parameters
这篇关于吴恩达week5 lesson1学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!