nlp事件抽取算例实现:(有完整算例和完整代码)

2023-10-24 21:10

本文主要是介绍nlp事件抽取算例实现:(有完整算例和完整代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

定义

事件抽取技术是从非结构化信息中抽取出用户感兴趣的事件,并以结构化呈现给用户。事件抽取任务可分解为4个子任务: 触发词识别、事件类型分类、论元识别和角色分类任务。其中,触发词识别和事件类型分类可合并成事件识别任务。论元识别和角色分类可合并成论元角色分类任务。事件识别判断句子中的每个单词归属的事件类型,是一个基于单词的多分类任务。角色分类任务则是一个基于词对的多分类任务,判断句子中任意一对触发词和实体之间的角色关系。

事件抽取任务:

事件有很多种,如因果事件,转则事件。。。
统一定义:一般一个事件都有事件,地点,人物等因素。
事件抽取就是把这些因素提取出来。
不多讲啦,上算例。

算例:

火灾新闻算例:
一个火灾事件新闻我们感兴趣的是 事故发生时间,事故发生地点,事故伤亡,事故原因。
我们把这些抽取出来.顺便再附上事件摘要。
即输入一个火灾事件新闻,输出 事故地点,事故时间,事故伤亡,事故原因,事故摘要。
方法:基于正则。

导入包:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Author: yudengwu
# @Date  : 2020/6/27
import re

#事故原因:

def pattern_cause(data):"data.type: [文字]"data = str(data)patterns = []key_words = ['起火', '事故', '火灾']pattern = re.compile('.*?(?:{0})原因(.*?)[,.?:;!,。?:;!]'.format('|'.join(key_words)))patterns.append(pattern)for c in patterns:print('事故原因:',c.search(data).group(1))

#事故伤亡:

def pattern_lose(data):"data.type: [文字]"data = str(data)patterns = []key_words = ['伤亡', '损失']pattern = re.compile('.*?(未造成.*?(?:{0}))[,.?:;!,。?:;]'.format('|'.join(key_words)))patterns.append(pattern)patterns.append(re.compile('(\d+人死亡)'))patterns.append(re.compile('(\d+人身亡)'))patterns.append(re.compile('(\d+人受伤)'))patterns.append(re.compile('(\d+人烧伤)'))patterns.append(re.compile('(\d+人坠楼身亡)'))patterns.append(re.compile('(\d+人遇难)'))for i in patterns:jieguo = i.search(data)if not jieguo:passelse:print('事故伤亡:',jieguo.group(1))

#事故时间:

#事故时间:
def pattern_time(data):data = ''.join(test_data)# data.type :strPATTERN = r"([0-9零一二两三四五六七八九十]+年)?([0-9一二两三四五六七八九十]+月)?([0-9一二两三四五六七八九十]+[号日])?([上中下午晚早]+)?([0-9零一二两三四五六七八九十百]+[点:\.时])?([0-9零一二三四五六七八九十百]+分?)?([0-9零一二三四五六七八九十百]+秒)?"pattern = re.compile(PATTERN)m = pattern.search(data)# "19年1月14日18时19分39秒上午"m1 = pattern.search("上午")year=m.group(1) # 年month=m.group(2) # 月day=m.group(3) # 日am=m.group(4)  # 上午,中午,下午,早中晚hour=m.group(5) # 时minutes=m.group(6)  # 分seconds=m.group(7) # 秒print('事故时间: ',year,month,day,am,hour,minutes,seconds)

#事故地点:

#事件地点
def pattern_address(data):data = ''.join(data)#转换格式p_string = data.split(',')#分句address=[]for line in p_string:line = str(line)PATTERN1 = r'([\u4e00-\u9fa5]{2,5}?(?:省|自治区|市)){0,1}([\u4e00-\u9fa5]{2,7}?(?:区|县|州)){0,1}([\u4e00-\u9fa5]{2,7}?(?:镇)){0,1}([\u4e00-\u9fa5]{2,7}?(?:村|街|街道)){0,1}([\d]{1,3}?(号)){0,1}'# \u4e00-\u9fa5 匹配任何中文# {2,5} 匹配2到5次# ? 前面可不匹配# (?:pattern) 如industr(?:y|ies) 就是一个比 'industry|industries' 更简略的表达式。意思就是说括号里面的内容是一个整体是以y或者ies结尾的单词pattern = re.compile(PATTERN1)p1 = ''p2 = ''p3 = ''p4 = ''p5 = ''p6 = ''m = pattern.search(line)if not m:continueelse:address.append(m.group(0))#print('事件地点:',m.group(0))print('事件地点:',set(address))

#事故摘要:
摘要讲解见链接:中文文本摘要提取 (文本摘要提取 有代码)基于python
停用词链接:nlp 中文停用词数据集

def shijian(data):import jiebatext=''.join(data)text = re.sub(r'[[0-9]*]', ' ', text)  # 去除类似[1],[2]text = re.sub(r'\s+', ' ', text)  # 用单个空格替换了所有额外的空格sentences = re.split('(。|!|\!|\.|?|\?)', text)  # 分句# 加载停用词def stopwordslist(filepath):stopwords = [line.strip() for line in open(filepath, 'r', encoding='gbk').readlines()]return stopwordsstopwords = stopwordslist("停用词.txt")# 词频word2count = {}  # line 1for word in jieba.cut(text):  # 对整个文本分词if word not in stopwords:if word not in word2count.keys():word2count[word] = 1else:word2count[word] += 1for key in word2count.keys():word2count[key] = word2count[key] / max(word2count.values())# 计算句子得分sent2score = {}for sentence in sentences:for word in jieba.cut(sentence):if word in word2count.keys():if len(sentence) < 300:if sentence not in sent2score.keys():sent2score[sentence] = word2count[word]else:sent2score[sentence] += word2count[word]# 字典排序def dic_order_value_and_get_key(dicts, count):# by hellojesson# 字典根据value排序,并且获取value排名前几的keyfinal_result = []# 先对字典排序sorted_dic = sorted([(k, v) for k, v in dicts.items()], reverse=True)tmp_set = set()  # 定义集合 会去重元素 --此处存在一个问题,成绩相同的会忽略,有待改进for item in sorted_dic:tmp_set.add(item[1])for list_item in sorted(tmp_set, reverse=True)[:count]:for dic_item in sorted_dic:if dic_item[1] == list_item:final_result.append(dic_item[0])return final_result# 摘要输出final_resul = dic_order_value_and_get_key(sent2score, 5)print('事件主要意思:',final_resul)

#主函数:

def main(data):pattern_cause(data)pattern_lose(data)pattern_time(data)pattern_address(data)shijian(data)
if __name__ =='__main__':#读取数据with open('新闻.txt', 'r', encoding='utf-8') as f:test_data = f.readlines()main(test_data)

数据集:新闻.txt

1月14日18时19分,宝鸡市渭滨区金陵街道机厂街社区铁路家属院17号楼一单元发生火灾,火势由二、三、四阳台向上蔓延,一名老人被困屋内,情况危急。宝鸡消防支队渭滨大队广元路中队接警后,迅速赶赴现场展开救援,将被困老人救出。记者了解到,火灾发生后,宝鸡消防支队渭滨大队广元路中队立即赶赴现场开展救援,经现场侦查发现,火势由二、三、四楼阳台向上蔓延,均已过火。由于小区内道路蜿蜒且狭窄,中队立即调派经一路、开元、宝光、电子街4个卫星消防站增援。中队到场后立即成立搜救组、灭火组、供水组开展救援工作。消防在搜救过程中发现1单元2楼南户有一名老人被困,中队立即进行营救,同时并对2单元30余名群众进行疏散。灭火小组从小区南北两侧对现场火势进行打压。铁塔路及新华路中队随后也赶到现场增援,20时10分现场明火被扑灭。火灾未造成人员伤亡,起火原因正在调查中。

运行结果
在这里插入图片描述
事件主题意思在下面:

截个全图看下:
在这里插入图片描述
运行结果还不错。
反思
这代码是针对国内新闻的,因为地址正则是针对国内地址的。
代码马马虎虎,不是很完善。针对其他类新闻和文本,则需修改下正则(如事事故伤亡可能没有)。
基于正则需要花费大量脑力。基于正则主要在于如何定义规则。
有时间还是想想基于模型吧。
电气工程的计算机萌新:余登武。写文章不容易。如果你喜欢本文章,请点个赞支持下写作,谢谢。
在这里插入图片描述
在这里插入图片描述

这篇关于nlp事件抽取算例实现:(有完整算例和完整代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/277767

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima