Mask Free VIS笔记(CVPR2023 不需要mask标注的实例分割)

2023-10-24 18:20

本文主要是介绍Mask Free VIS笔记(CVPR2023 不需要mask标注的实例分割),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

paper: Mask-Free Video Instance Segmentation
github

一般模型学instance segmentation都是要有mask标注的,
不过mask标注既耗时又枯燥,所以paper中仅用目标框的标注来实现实例分割

主要针对视频的实例分割
之前也有box-supervised实例分割,不过是针对图像的,用在视频中精度不是很高,
作者分析视频的特点是图像是连续的,那就是说同一目标区域在连续的帧中应该属于一个mask label.

理论是时间连续性,一个视频是由多个图片组成的连续的画面,目标的变化也是渐变的。
t+1时刻的帧 与 t时刻对应的区域,像素如果属于同一目标或者背景,那么就应该有相同的mask.
这种找连续画面的对应区域,流行的是用光流法。

不过光流法面临2个问题:
1.不稳定,在有遮挡(找不到),没有明显的纹理(未定义),或者是只有一个边缘(模棱两可)时。
2. SOTA光流法用了深度网络,计算量内存量很大。

paper中定义了temporal KNN-patch loss(TK-loss)
简要介绍一下TK-loss,对于每一个目标patch, 在相邻帧找到matching score最高的前K个匹配。
对K个匹配都计算loss。

和光流法的区别是,光流法是1对1匹配,而TK-loss是1对K匹配。
K可以是0,比如遮挡的情况,也可以是K>=2, 比如天空,地面这种纹理不丰富的情况。
当K>=2时,可能多个patch都属于同一目标或者背景。
此方法计算量不大,而且没有需要学习的参数

计算TK-loss有4个步骤,如下图

在这里插入图片描述

步骤1
候选patch。
一个N * N的patch, 假设它的中心点坐标为p=(x, y), X p t X_{p}^t Xpt表示第 t 帧以p为中心点的N * N patch.
现要找到 t ^ \hat{t} t^ 帧与 X p t X_{p}^t Xpt对应的patch(中心点) 在这里插入图片描述
中心点的位置可在以p为中心,半径R内的区域选取(有点像模板匹配中的local search),
加速措施的所有target image同时做这个窗口搜索。

步骤2
K个匹配。
匹配肯定要计算距离,paper中用的是L2距离,
在这里插入图片描述
选取距离最小的K个匹配。
这K个匹配里面可能还有距离不够小的,这时用一个阈值再过滤一次,把距离>=阈值D的过滤掉。
剩下的就是要求的在这里插入图片描述

步骤3
一致性loss。
当匹配的patch不属于一个mask时,就会带来损失。
M p t M_{p}^t Mpt为预测的二值mask值(0,1), 位置p, 第 t 帧。
如果(p,t) 与它的对应patch 在这里插入图片描述不一致,就会有loss.
在这里插入图片描述
其中
在这里插入图片描述
可以看出,在匹配点的mask值都是0或都是1时,log里面是1,整体的loss是0,也就是说匹配点一致时不会带来损失。

步骤4
Cyclic Tube连接
tube是指包含了一个时间序列的帧数的管道,设有T帧。
每次要计算一个tube里面所有帧的loss. 用循环(cyclic)的方式。
在这里插入图片描述
这里一个时间通道用5帧,shuffle过。
蓝色表示两两帧之间都计算loss。
红色是cyclic连接,最后一帧和第一帧计算loss, 其他的计算相邻帧的loss.
在这里插入图片描述

训练

以往的实例分割训练都需要mask的标注,paper中不用mask标注,只用box 标注。
那么就不能像计算mask loss那样用到预测mask和gt mask.
作者用了BoxInst中的两个损失函数来替代mask loss.
box映射损失 L p r o j L_{proj} Lproj和相邻像素的损失 L p a i r L_{pair} Lpair.

其中映射损失为
在这里插入图片描述
用的是dice loss, 因为作者发现cross-entropy会导致大的object损失比小的object要大。
这里计算loss时忽略标签。

相邻像素的损失 L p a i r L_{pair} Lpair主要依据是认为同一帧颜色相近的相邻像素应该属于同一物体。

在这里插入图片描述
不过一张图像上那么多点,公式上看pi是属于目标框内的点,不过pj怎么选呢,这里没说。
BoxInst中指出是周围的8个点(要间隔一个点)。

在这里插入图片描述
BoxInst中loss就是简单地把2者结合起来:
在这里插入图片描述
而paper中作者加了一个权重,得到空间loss:
在这里插入图片描述
还有一个时间上的loss, 就是前面提到的TK-loss. 把空间loss和时间loss结合起来得到最终的损失函数:

在这里插入图片描述
回忆一下TK-loss L t e m p L_{temp} Ltemp,

取T帧的时间通道,计算相邻两帧的loss, 最后一帧和第一帧计算loss.
在这里插入图片描述
loss如下:
在这里插入图片描述
遍历一帧图像内所有点,设其中一点为p,找半径R范围内的点作为匹配点的候补,以每个点为中心求N * N patch的L2距离。
找到前K个距离最小的候补点,去掉距离<D的候补点,剩下的就是匹配点。
然后计算匹配点的mask是否一致。
在这里插入图片描述

一帧所有的点算完后,按cyclic的顺序计算一个时间通道内所有帧的loss叠加.

L t e m p L_{temp} Ltemp的算法流程如下:
在这里插入图片描述

总结

把实例分割方法中的mask loss替换成paper中的 L s e g L_{seg} Lseg,就能实现只有box标注下的video实例分割。

所以,认为本文其实是改进了BoxInst损失函数,考虑video图片连续性的特点,在BoxInst的基础上加上了时间损失 L t e m p L_{temp} Ltemp
paper中的时间损失 L t e m p L_{temp} Ltemp是针对video场景的 ,如果单纯是图片的实例分割,图片没有连续性,就不适用。

实验数据参照paper

这篇关于Mask Free VIS笔记(CVPR2023 不需要mask标注的实例分割)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/276940

相关文章

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

mysqld_multi在Linux服务器上运行多个MySQL实例

《mysqld_multi在Linux服务器上运行多个MySQL实例》在Linux系统上使用mysqld_multi来启动和管理多个MySQL实例是一种常见的做法,这种方式允许你在同一台机器上运行多个... 目录1. 安装mysql2. 配置文件示例配置文件3. 创建数据目录4. 启动和管理实例启动所有实例

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结