[补题记录] Atcoder Beginner Contest 325(E、F)

2023-10-24 14:28

本文主要是介绍[补题记录] Atcoder Beginner Contest 325(E、F),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

URL:https://atcoder.jp/contests/abc325

目录

E

Problem/题意

Thought/思路

Code/代码

F

Problem/题意

Thought/思路

Code/代码


E

Problem/题意

有一个二维矩阵,D[i][j] 表示从 i 到 j 的距离。从 i 到 j 有两种方式:

  • 坐汽车:耗费 D[i][j] * A;
  • 坐火车:耗费 D[i][j] * B + C;

你可以选择在某个城市 i 换乘火车,但不能再从火车换乘汽车。问最少的时间。

Thought/思路

恼馋题目,使我的 rank 旋转。

最重要的是理解这句话,然后做两个反向的最短🦌即可。

Code/代码

#include "bits/stdc++.h"#define int long longconst int inf = 1e15;int n, a, b, c, d[1007][1007], dis1[1000007], dis2[1000007];void dij(int s, int* dis) {for (int i = 1; i <= 1000000; ++ i) dis[i] = inf;dis[s] = 0;std::queue <int> q;q.push(s);while (!q.empty()) {int i = q.front(); q.pop();for (int j = 1; j <= n; ++ j) {int w = (s == 1 ? d[i][j] * a : d[i][j] * b + c);if (dis[j] > w + dis[i]) {dis[j] = w + dis[i];q.push(j);}}}
}signed main() {std::ios::sync_with_stdio(false);std::cin.tie(0); std::cout.tie(0);std::cin >> n >> a >> b >> c;for (int i = 1; i <= n; ++ i) {for (int j = 1; j <= n; ++ j) {std::cin >> d[i][j];}}dij(1, dis1);dij(n, dis2);int ans = inf;for (int i = 1; i <= n; ++ i){ans = std::min(dis1[i] + dis2[i], ans);}std::cout << ans;}

F

Problem/题意

有 N 条传输带需要监控,每条传输带长度为 D[i],现在有两种监控可以选择:

  • 第一种:监控长度为 L[1],售价 C[1];
  • 第二种:监控长度为 L[2],售价 C[2];

要求:

  • 对于传输带 D[i],所选的监控可以覆盖其长度;
  • 每种监控的购买数量不能超过 K[1]、K[2];

问是否能保证 N 条传输带都能被完整监控,若能,最小代价是多少。

Thought/思路

这个题要求维护最小值以及类似背包的最大数量。

通常我们在背包中,dp 表示最大价值,但在这个题中,多了一个 K 需要维护。

再想到,如果知道了某个状态下的 K[1]、K[2],其实就能求出这个状态下的价值。

因此,我们可以把 K2 当作 dp 表示的值,维护 K1 不超过限制的情况下,K2 的最少数量。

因此,dp[i][j] 表示:前 i 个,一共使用了 j 个一类监控,所需要的最少二类监控的数量。

Code/代码

#include "bits/stdc++.h"#define int long longconst int inf = 1e15;int n, d[100007], dp[107][1007];
std::array <int, 3> l, c, k;signed main() {std::cin >> n;for (int i = 1; i <= n; ++ i) {std::cin >> d[i];for (int j = 0; j <= 1000; ++ j) {dp[i][j] = inf;}}std::cin >> l[1] >> c[1] >> k[1];std::cin >> l[2] >> c[2] >> k[2];for (int i = 1; i <= n; ++ i) {for (int j = 0; j <= k[1]; ++ j) { // 总共用了 j 个 K1for (int k = 0; k <= j; ++ k) { // j 与 k 做差,得出第 i 个用了几个 K1int p = j - k;int a = (d[i] - p * l[1] <= 0 ? 0 : d[i] - p * l[1]);dp[i][j] = std::min(dp[i][j], dp[i - 1][k] + (a % l[2] == 0 ? a / l[2] : a / l[2] + 1));}}}int ans = inf;for (int i = 0; i <= k[1]; ++ i) {if (dp[n][i] <= k[2]) {ans = std::min(i * c[1] + dp[n][i] * c[2], ans);}}if (ans == inf) std::cout << -1;else std::cout << ans;
}

这篇关于[补题记录] Atcoder Beginner Contest 325(E、F)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275783

相关文章

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件

2014 Multi-University Training Contest 8小记

1002 计算几何 最大的速度才可能拥有无限的面积。 最大的速度的点 求凸包, 凸包上的点( 注意不是端点 ) 才拥有无限的面积 注意 :  凸包上如果有重点则不满足。 另外最大的速度为0也不行的。 int cmp(double x){if(fabs(x) < 1e-8) return 0 ;if(x > 0) return 1 ;return -1 ;}struct poin

2014 Multi-University Training Contest 7小记

1003   数学 , 先暴力再解方程。 在b进制下是个2 , 3 位数的 大概是10000进制以上 。这部分解方程 2-10000 直接暴力 typedef long long LL ;LL n ;int ok(int b){LL m = n ;int c ;while(m){c = m % b ;if(c == 3 || c == 4 || c == 5 ||