Spark框架深度理解一:开发缘由及优缺点

2023-10-24 12:59

本文主要是介绍Spark框架深度理解一:开发缘由及优缺点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


前言

由于Spark框架大多都搭建在Hadoop系统之上,要明白Spark核心运行原理还是得对Hadoop体系有个熟悉的认知。从Hadoop1.0到Hadoop2.0架构的优化和发展探索详解这篇博客大家可以先去温习一下Hadoop整个体系,然后再来了解Spark框架会更有效率。

本来想直接写一篇缘由优缺点以及生态圈和运行架构与原理的,发现篇幅实在是太长了,索性分两篇

一、开发Spark目的

如果要用到Spark那基本上离不开Hadoop,我们了解到为了弥补Hadoop体系的许多不便之处,软件工程师们开发了很多便利工具去弥补Hadoop的不足或者去利用这种分布式处理的体系。例如:Hbase,Hive,等工具。

而开发Spark的主要目的,是其MapReduce计算模型延迟过高,无法胜任实时,快速计算的需求,也太过单调无法在以上做更多的开发。Spark的诞生弥补了MapReduce的缺陷。Spark继承了MapReduce分布式计算的优点并改进了MapReduce明显的缺陷。

Spark的发展历史:

2009年,Spark诞生于伯克利大学的AMPLab实验室。最出Spark只是一个实验性的项目,代码量非常少,属于轻量级的框架。

2010年,伯克利大学正式开源了Spark项目。

2013年,Spark成为了Apache基金会下的项目,进入高速发展期。第三方开发者贡献了大量的代码,活跃度非常高。

2014年,Spark以飞快的速度称为了Apache的顶级项目。

2015年~,Spark在国内IT行业变得愈发火爆,大量的公司开始重点部署或者使用Spark来替代MapReduce、Hive、Storm等传统的大数据计算框架。

 二、Spark的优缺点

1.优点

1.快速

Spark基于内存进行计算。

Spark基于内存进行计算。

Spark基于内存进行计算。

内存计算和磁盘运算的差距就不用我多说了吧,学过操作系统的懂得都懂。但是我还是讲一下这两者的区别:

我们知道计算机是利用CPU进行数据的运算的,但CPU只能对内存中的数据进行运算,而对于磁盘中的数据是不能运算的。如果要运算磁盘中的数据,必须先把磁盘中的数据读入内存,CPU才能进行运算。

我们可以用logistic算法Logistic模型原理详解分别用Hadoop MapReduce和Spark跑一边,logistic需要不停的迭代梯度算出最优参数,因此迭代了相当多次。对比:

 一般情况下,对于迭代次数较多的应用程序,Spark程序在内存中的运行速度是Hadoop MapReduce运行速度的100多倍,在磁盘上的运行速度是Hadoop MapReduce运行速度的10多倍。

Spark的中间数据存放于内存中,有更高的迭代运算效率,而Hadoop每次迭代的中间数据存放HDFS中,设计硬盘的读写,明显降低了运算效率。

2.易用

Spark支持多语言。Spark允许Java、Scala、Python及R(Spark 1.4版最新支持),这允许更多的开发者在自己熟悉的语言环境下进行工作,普及了Spark的应用范围,它自带80多个高等级操作符,允许在shell中进行交互式查询,它多种使用模式的特点让应用更灵活。
 

3.通用

Spark提供了Spark RDD、Spark SQL、Spark Streaming、Spark MLlib、Spark GraphX等技术组件,可以一站式地完成大数据领域的离线批处理、交互式查询、流式计算、机器学习、图计算等常见的任务。

3.随处运行

用户可以使用Spark的独立集群模式运行Spark,也可以在EC2(亚马逊弹性计算云)、Hadoop YARN或者Apache Mesos上运行Spark。并且可以从HDFSCassandraHBaseHiveTachyon和任何分布式文件系统读取数据。

4.支持复杂查询

除了简单的map及reduce操作之外,Spark还支持filter、foreach、reduceByKey、aggregate以及SQL查询、流式查询等复杂查询。Spark更为强大之处是用户可以在同一个工作流中无缝的搭配这些功能,例如Spark可以通过Spark Streaming获取流数据,然后对数据进行实时SQL查询或使用MLlib库进行系统推荐,而且这些复杂业务的集成并不复杂,因为它们都基于RDD这一抽象数据集在不同业务过程中进行转换,转换代价小,体现了统一引擎解决不同类型工作场景的特点。
 

5.随处运行

Spark不仅可以独立的运行(使用standalone模式),还可以运行在当下的YARN管理集群中。它还可以读取已有的任何Hadoop数据,这是个非常大的优势,它可以运行在任何Hadoop数据源上,比如HBase、HDFS、Hive等。如果合适的话,这个特性让用户可以轻易迁移已有Hadoop应用。
 

6.代码简洁

MapReduce十几行的代码用Scala写的程序在Spark上仅需要一行就能解决。

MapReduce:

Scala:

sc.textFile("/user/root/a.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).saveAsTextFile("/user/root/output")

 二、缺点

1.内存问题

 JVM的内存overhead太大,1G的数据通常需要消耗5G的内存。

2.性能问题

由于大量数据抄被缓存在RAM中,Java回收垃圾缓慢的情况严重,导致Spark性能不稳定。


参阅:

计算机内存和磁盘的关系

spark的前世今生

Spark及其生态圈简介

这篇关于Spark框架深度理解一:开发缘由及优缺点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275330

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”