ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)

2023-10-24 12:50

本文主要是介绍ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用pip 安装建议用国内源,如 pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple

目录

1.conda env 环境创建

2. install pytorch 

3. install fvcore

4. install simplejson

5. gcc版本查看

6. PyAV

7.ffmpeg with PyAV

8. PyYaml , tqdm

9.iopath

10. psutil

11. opencv

12. tensorboard

13. moviepy

14. PyTorchVideo

15. Detectron2

16. FairScale

17. SlowFast

运行Demo测试模型

安装过程中遇到的一些errors

error0 

         error1

error2

error3

error4

error5

error6

error7


1.conda env 环境创建

conda create -n py39 python=3.9

2. install pytorch 

先查看cuda版本 , 再对应pytorch版本

查看系统nvidia驱动版本支持最高cuda版本

查看当前cuda版本

根据对应cuda版本安装pytorch torchvision

source activate py39
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch

3. install fvcore

pip install git+https://github.com/facebookresearch/fvcore

4. install simplejson

pip install simplejson 

5. gcc版本查看

gcc -v



版本是 7.5.0

6. PyAV

conda install av -c conda-forge

7.ffmpeg with PyAV

pip install av

8. PyYaml , tqdm

pip list fvcore

9.iopath

pip install -U iopath

10. psutil

pip install psutil

11. opencv

pip install opencv-python

12. tensorboard

查看是否安装tensorboard:

conda list tensorboard


没有安装tensorboard

pip install tensorboard

13. moviepy

pip install moviepy

14. PyTorchVideo

pip install pytorchvideo

15. Detectron2

git clone https://github.com/facebookresearch/detectron2 detectron2_repo

pip install -e detectron2_repo

16. FairScale

pip install git+https://github.com/facebookresearch/fairscale

17. SlowFast

git clone https://github.com/facebookresearch/SlowFast.git


cd SlowFast
python setup.py build develop

运行Demo测试模型

python3 tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R101_50_50.yaml

安装过程中遇到的一些errors

error0 

not find PIL 

解决办法:将setup.py 中的 PIL 更改为 Pillow 

error1

from pytorchvideo.layers.distributed import ( # noqa
ImportError: cannot import name 'cat_all_gather' from 'pytorchvideo.layers.distributed' (/home/cxgk/anaconda3/envs/sf/lib/python3.9/site-packages/pytorchvideo/layers/distributed.py)

解决方式:

方式一:将pytorchvideo/pytorchvideo at main · facebookresearch/pytorchvideo · GitHub文件下内容复制到虚拟环境所对应的文件下,这里是:/home/cxgk/anaconda3/envs/sf/lib/python3.9/site-packages/pytorchvideo/

方式二:
layers/distributed.py添加如下内容

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved."""Distributed helpers."""import torch
import torch.distributed as dist
from torch._C._distributed_c10d import ProcessGroup
from torch.autograd.function import Function_LOCAL_PROCESS_GROUP = Nonedef get_world_size() -> int:"""Simple wrapper for correctly getting worldsize in both distributed/ non-distributed settings"""return (torch.distributed.get_world_size()if torch.distributed.is_available() and torch.distributed.is_initialized()else 1)def cat_all_gather(tensors, local=False):"""Performs the concatenated all_reduce operation on the provided tensors."""if local:gather_sz = get_local_size()else:gather_sz = torch.distributed.get_world_size()tensors_gather = [torch.ones_like(tensors) for _ in range(gather_sz)]torch.distributed.all_gather(tensors_gather,tensors,async_op=False,group=_LOCAL_PROCESS_GROUP if local else None,)output = torch.cat(tensors_gather, dim=0)return outputdef init_distributed_training(cfg):"""Initialize variables needed for distributed training."""if cfg.NUM_GPUS <= 1:returnnum_gpus_per_machine = cfg.NUM_GPUSnum_machines = dist.get_world_size() // num_gpus_per_machinefor i in range(num_machines):ranks_on_i = list(range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine))pg = dist.new_group(ranks_on_i)if i == cfg.SHARD_ID:global _LOCAL_PROCESS_GROUP_LOCAL_PROCESS_GROUP = pgdef get_local_size() -> int:"""Returns:The size of the per-machine process group,i.e. the number of processes per machine."""if not dist.is_available():return 1if not dist.is_initialized():return 1return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)def get_local_rank() -> int:"""Returns:The rank of the current process within the local (per-machine) process group."""if not dist.is_available():return 0if not dist.is_initialized():return 0assert _LOCAL_PROCESS_GROUP is not Nonereturn dist.get_rank(group=_LOCAL_PROCESS_GROUP)def get_local_process_group() -> ProcessGroup:assert _LOCAL_PROCESS_GROUP is not Nonereturn _LOCAL_PROCESS_GROUPclass GroupGather(Function):"""GroupGather performs all gather on each of the local process/ GPU groups."""@staticmethoddef forward(ctx, input, num_sync_devices, num_groups):"""Perform forwarding, gathering the stats across different process/ GPUgroup."""ctx.num_sync_devices = num_sync_devicesctx.num_groups = num_groupsinput_list = [torch.zeros_like(input) for k in range(get_local_size())]dist.all_gather(input_list, input, async_op=False, group=get_local_process_group())inputs = torch.stack(input_list, dim=0)if num_groups > 1:rank = get_local_rank()group_idx = rank // num_sync_devicesinputs = inputs[group_idx * num_sync_devices : (group_idx + 1) * num_sync_devices]inputs = torch.sum(inputs, dim=0)return inputs@staticmethoddef backward(ctx, grad_output):"""Perform backwarding, gathering the gradients across different process/ GPUgroup."""grad_output_list = [torch.zeros_like(grad_output) for k in range(get_local_size())]dist.all_gather(grad_output_list,grad_output,async_op=False,group=get_local_process_group(),)grads = torch.stack(grad_output_list, dim=0)if ctx.num_groups > 1:rank = get_local_rank()group_idx = rank // ctx.num_sync_devicesgrads = grads[group_idx* ctx.num_sync_devices : (group_idx + 1)* ctx.num_sync_devices]grads = torch.sum(grads, dim=0)return grads, None, None

error2

from scipy.ndimage import gaussian_filter

ModuleNotFoundError: No module named 'scipy'

解决方法:

pip install scipy

error3

from av._core import time_base, library_versions

ImportError: /home/cxgk/anaconda3/envs/sf/lib/python3.9/site-packages/av/../../.././libgnutls.so.30: symbol mpn_copyi version HOGWEED_6 not defined in file libhogweed.so.6 with link time reference
 

解决方法:

先移处av包

使用 pip安装


pip install av


error4

File "/media/cxgk/Linux/work/SlowFast/slowfast/models/losses.py", line 11, in
from pytorchvideo.losses.soft_target_cross_entropy import (
ModuleNotFoundError: No module named 'pytorchvideo.losses'

解决办法:

打开"/home/cxgk/anaconda3/envs/sf/lib/python3.9/site-packages/pytorchvideo/losses",在文件夹下新建 soft_target_cross_entropy.py, 并打开添加如下代码:

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorchvideo.layers.utils import set_attributes
from pytorchvideo.transforms.functional import convert_to_one_hotclass SoftTargetCrossEntropyLoss(nn.Module):"""Adapted from Classy Vision: ./classy_vision/losses/soft_target_cross_entropy_loss.py.This allows the targets for the cross entropy loss to be multi-label."""def __init__(self,ignore_index: int = -100,reduction: str = "mean",normalize_targets: bool = True,) -> None:"""Args:ignore_index (int): sample should be ignored for loss if the class is this value.reduction (str): specifies reduction to apply to the output.normalize_targets (bool): whether the targets should be normalized to a sum of 1based on the total count of positive targets for a given sample."""super().__init__()set_attributes(self, locals())assert isinstance(self.normalize_targets, bool)if self.reduction not in ["mean", "none"]:raise NotImplementedError('reduction type "{}" not implemented'.format(self.reduction))self.eps = torch.finfo(torch.float32).epsdef forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:"""Args:input (torch.Tensor): the shape of the tensor is N x C, where N is the number ofsamples and C is the number of classes. The tensor is raw input withoutsoftmax/sigmoid.target (torch.Tensor): the shape of the tensor is N x C or N. If the shape is N, wewill convert the target to one hot vectors."""# Check if targets are inputted as class integersif target.ndim == 1:assert (input.shape[0] == target.shape[0]), "SoftTargetCrossEntropyLoss requires input and target to have same batch size!"target = convert_to_one_hot(target.view(-1, 1), input.shape[1])assert input.shape == target.shape, ("SoftTargetCrossEntropyLoss requires input and target to be same "f"shape: {input.shape} != {target.shape}")# Samples where the targets are ignore_index do not contribute to the lossN, C = target.shapevalid_mask = torch.ones((N, 1), dtype=torch.float).to(input.device)if 0 <= self.ignore_index <= C - 1:drop_idx = target[:, self.ignore_idx] > 0valid_mask[drop_idx] = 0valid_targets = target.float() * valid_maskif self.normalize_targets:valid_targets /= self.eps + valid_targets.sum(dim=1, keepdim=True)per_sample_per_target_loss = -valid_targets * F.log_softmax(input, -1)per_sample_loss = torch.sum(per_sample_per_target_loss, -1)# Perform reductionif self.reduction == "mean":# Normalize based on the number of samples with > 0 non-ignored targetsloss = per_sample_loss.sum() / torch.sum((torch.sum(valid_mask, -1) > 0)).clamp(min=1)elif self.reduction == "none":loss = per_sample_lossreturn 

error5

from sklearn.metrics import confusion_matrix

ModuleNotFoundError: No module named 'sklearn'

解决办法:

pip install scikit-learn

error6

raise KeyError("Non-existent config key: {}".format(full_key))

KeyError: 'Non-existent config key: TENSORBOARD.MODEL_VIS.TOPK'

解决方法:

注释掉如下三行:

TENSORBOARD

MODEL_VIS

TOPK

error7

RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 3.94 GiB total capacity; 2.83 GiB already allocated; 25.44 MiB free; 2.84 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

解决方法:

将yaml里的帧数改小:

DATA:
NUM_FRAMES: 16

Reference:

https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo

这篇关于ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275294

相关文章

windows下安装Nginx全过程

《windows下安装Nginx全过程》文章介绍了HTTP和反向代理服务器的概念,包括正向代理和反向代理的区别,并详细描述了如何安装和配置Nginx作为反向代理服务器... 目录概念代理正向代理反向代理安装基本属性nginx.conf查询结构属性使用运行重启停止总结概念是一个高性能的HTTP和反向代理we

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

2025最新版Android Studio安装及组件配置教程(SDK、JDK、Gradle)

《2025最新版AndroidStudio安装及组件配置教程(SDK、JDK、Gradle)》:本文主要介绍2025最新版AndroidStudio安装及组件配置(SDK、JDK、Gradle... 目录原生 android 简介Android Studio必备组件一、Android Studio安装二、A

CPython与PyPy解释器架构的性能测试结果对比

《CPython与PyPy解释器架构的性能测试结果对比》Python解释器的选择对应用程序性能有着决定性影响,CPython以其稳定性和丰富的生态系统著称;而PyPy作为基于JIT(即时编译)技术的替... 目录引言python解释器架构概述CPython架构解析PyPy架构解析架构对比可视化性能基准测试测

前端Visual Studio Code安装配置教程之下载、汉化、常用组件及基本操作

《前端VisualStudioCode安装配置教程之下载、汉化、常用组件及基本操作》VisualStudioCode是微软推出的一个强大的代码编辑器,功能强大,操作简单便捷,还有着良好的用户界面,... 目录一、Visual Studio Code下载二、汉化三、常用组件1、Auto Rename Tag2

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

win10安装及配置Gradle全过程

《win10安装及配置Gradle全过程》本文详细介绍了Gradle的下载、安装、环境变量配置以及如何修改本地仓库位置,通过这些步骤,用户可以成功安装并配置Gradle,以便进行项目构建... 目录一、Gradle下载1.1、Gradle下载地址1.2、Gradle下载步骤二、Gradle安装步骤2.1、安