宋宝华: 聊一聊进程深度睡眠的TASK_KILLABLE这个状态

2023-10-24 09:51

本文主要是介绍宋宝华: 聊一聊进程深度睡眠的TASK_KILLABLE这个状态,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

众所周知,Linux的进程睡眠有两种常规状态:

  • TASK_INTERRUPTIBLE(浅度睡眠):可以被等待的资源唤醒,也能被signal唤醒;

  • TASK_UNINTERRUPTIBLE(深度睡眠):可以被等待的资源唤醒,但是不能被signal唤醒。

简单来说,深度睡眠的进程必须等待资源来了才能醒,在此之前,甚至你给它发任何的信号,它都不可能醒来。

浅度睡眠的进程,则可以被信号唤醒,对于常规的键盘、串口、触摸屏等等这些I/O设备,显然符合此类模型。所以Linux内核的代码里面经常看到这样的代码模板,笔者在《Linux设备驱动开发详解》一书中也花了大篇幅解释如下模板:

调用__set_current_state(TASK_INTERRUPTIBLE)并schedule()出去的进程,醒来第一件事往往就是通过signal_pending(current)查看信号是否存在,如果存在,就跳出去处理信号,无需等待I/O的完成(大不了信号处理完了再重新read)。

TASK_INTERRUPTIBLE看起来很理想,不至于在I/O没完成的时候,连CTRL+C都不响应(当然也不会响应其他SIGIO、SIGUSR1等信号)。

那么,有的童鞋就会问,既然浅度睡眠这么好,那么还要TASK_UNINTERRUPTIBLE这种完全不响应信号的深度睡眠干什么?

正在读本文的你,可能都有过这样的悲催经历,在NFS文件系统上面运行程序,但是NFS服务器挂了,你怎么都ctrl + c不掉那个进程,因为它就是个深度睡眠的场景。你徘徊,你迷茫,你问能不能直接都改为TASK_INTERRUPTIBLE,彻底删除TASK_UNINTERRUPTIBLE呢?

对此,祖师爷Linus的答复是:不可能。请看他2002年的邮件:

对于磁盘读等场景,如果读还没完成,就跳出去响应信号,application可能break,所以深度睡眠必须存在是一个客观的冷酷的现实(code fact)

祖师爷还有更猛的一锤定音:

但是,如果application break已经不再重要?如果干脆就是一个致命的信号,本身就是杀死应用的信号(SIGKILL),那么application break这个就显得无关紧要了,因为我们本身就不打算继续玩下去了!这样就使得深度睡眠的进程,还可以被杀死,妈妈再也不用担心NFS服务器挂了后,我痛苦,我孤独,我精分了!

Linux因此推出了一个特殊的深度睡眠状态,叫做

  • TASK_KILLABLE(可杀的深度睡眠):可以被等到的资源唤醒,不能被常规信号唤醒,但是可以被致命信号唤醒。

TASK_KILLABLE状态的定义是:

#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)

所以它显然是属于TASK_UNINTERRUPTIBLE的,只是可以被TASK_WAKEKILL。

什么叫致命信号呢?talk is cheap,show me the code。

所以,足够致命的信号就是SIGKILL。SIGKILL何许人也,就是传说中的信号9,无法阻挡无法被应用覆盖的终极杀器:

仅仅从这个代码可以看出来,只有信号9才属于fatal signals。那么是不是只有信号9,才可以杀死TASK_KILLABLE的进程,信号2(CTRL+C)是否无能为力呢?

猜想再多,不如玩一个真实的代码,我们下面来改造下,把globalfifo.c的read改造为TASK_KILLABLE。

加载这个driver后,我们来读取它:

# insmod globalfifo.ko 

# insmod globalfifo-dev.ko 

# cat /dev/globalfifo 

这个时候,我们ps命令看一下,可以清楚到看到cat进程处于D状态:

root      7658  0.0  0.0  16800   752 pts/1    D+   19:21   0:00 cat /dev/globalfifo

从前面的代码可以看出,CTRL+C是不应该可以杀死这个cat进程的,因为它不是SIGKILL。但是我们来实际测试一下:

# cat /dev/globalfifo 

^C

#

实际却是可以杀死!!!

我们查看一下我们加的那个内核打印代码,看一下signal pending的情况:

# dmesg

[ 4670.082548] wake-up by fatal signal 100

明明我们发的是信号2,但是被置上的就是信号9(0x100的1对应SIGKILL的位)。这里发生了神奇的化学反应!!!

这踏马到底是怎么回事?这说明kernel把其他的可能杀死这个进程的信号,譬如SIGINT,也转化为了致命的SIGKILL信号。我们现在把代码改一行,要求kernel不要把SIGINT转换为SIGKILL:

这个时候,我们用CTRL+C就杀不死它了:

# cat /dev/globalfifo 

^C^C^C^C

但是它还是可以被9杀死:

$ sudo kill -9 8792

看看allow_signal()的代码:

(END)

Linux阅码场原创精华文章汇总

更多精彩,尽在"Linux阅码场",扫描下方二维码关注

点一点右下角”在看”,为阅码场打Call~

这篇关于宋宝华: 聊一聊进程深度睡眠的TASK_KILLABLE这个状态的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/274348

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

linux报错INFO:task xxxxxx:634 blocked for more than 120 seconds.三种解决方式

《linux报错INFO:taskxxxxxx:634blockedformorethan120seconds.三种解决方式》文章描述了一个Linux最小系统运行时出现的“hung_ta... 目录1.问题描述2.解决办法2.1 缩小文件系统缓存大小2.2 修改系统IO调度策略2.3 取消120秒时间限制3

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree