备战2023蓝桥国赛-Who killed Cock Robin

2023-10-24 07:31

本文主要是介绍备战2023蓝桥国赛-Who killed Cock Robin,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:Who killed Cock Robin
题目描述:
Who killed Cock Robin?
I, said the Sparrow, With my bow and arrow,I killed Cock Robin.
Who saw him die?
I, said the Fly.With my little eye,I saw him die.
Who caught his blood?
I, said the Fish,With my little dish,I caught his blood.
Who’ll make his shroud?
I, said the Beetle,With my thread and needle,I’ll make the shroud.

All the birds of the air
Fell a-sighing and a-sobbing.
When they heard the bell toll.
For poor Cock Robin.
March 26, 2018

Sparrows are a kind of gregarious animals,sometimes the relationship between them can be represented by a tree.
The Sparrow is for trial, at next bird assizes,we should select a connected subgraph from the whole tree of sparrows as trial objects.
Because the relationship between sparrows is too complex, so we want to leave this problem to you. And your task is to calculate how many different ways can we select a connected subgraph from the whole tree.

输入描述:
在这里插入图片描述
输出描述:
在这里插入图片描述
在这里插入图片描述
题目分析:
一开始我以为用并查集可以做出来,后面做着做着就发现不行,因为这是树,不是图,那么得换个思路了。
仔细想想,我们可以用树形dp来做,定义一个数组dp[i]表示所有以根节点为i的子图的个数,如果根节点i有k个子树,那么dp[i]就等于(dp[1]+1)✖(dp[2]+1)✖…dp[k]+1,为啥要加1呢? 因为子树子图数为0也是一种情况!后面就用dfs来更新dp数组了,记得要在语句中判断当前dp[i]是否已经算过了,这能减少很多复杂度。
时间复杂度:O(n)
代码:

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10,mod=1e7+7;
typedef long long ll;
int dp[N],n;
vector<int> edges[N];
ll ans=0;
ll dfs(int x)
{dp[x]=1;ll res=1;for(int i=0;i<edges[x].size();i++){int t=edges[x][i];if(dp[t]) continue;res=(res*(dfs(t)+1))%mod;}dp[x]=res;return res;
}
int main()
{scanf("%d",&n);for(int i=1;i<=n-1;i++){int u,v;scanf("%d%d",&u,&v);edges[u].push_back(v);edges[v].push_back(u);}dfs(1);for(int i=1;i<=n;i++)ans=(ans+dp[i])%mod;cout<<ans<<endl;return 0;
}

这篇关于备战2023蓝桥国赛-Who killed Cock Robin的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/273670

相关文章

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

HNU-2023电路与电子学-实验3

写在前面: 一、实验目的 1.了解简易模型机的内部结构和工作原理。 2.分析模型机的功能,设计 8 重 3-1 多路复用器。 3.分析模型机的功能,设计 8 重 2-1 多路复用器。 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。 二、实验内容 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器; 2.用 VERILOG 语言设计模型机的 8 重 2-1 多

C语言蓝桥杯

一、语言基础 竞赛常用库函数 最值查询 min_element和max_element在vector(迭代器的使用) nth_element函数的使用 例题lanqiao OJ 497成绩分析 第一种用min_element和max_element函数的写法 第二种用min和max的写法 二分查找 二分查找只能对数组操作 binary_s

2024年高教社杯数学建模国赛最后一步——结果检验-事关最终奖项

2024年国赛已经来到了最后一天,有必要去给大家讲解一下,我们不需要过多的去关注模型的结果,因为模型的结果的分值设定项最多不到20分。但是如果大家真的非常关注的话,那有必要给大家讲解一下论文结果相关的问题。很多的论文,上至国赛优秀论文下至不获奖的论文并不是所有的论文都可以进行完整的复现求解,大部分数模论文都为存在一个灰色地带。         白色地带即认为所有的代码均可运行、公开

【全网最全】2024年数学建模国赛A题30页完整建模文档+17页成品论文+保奖matla代码+可视化图表等(后续会更新)

您的点赞收藏是我继续更新的最大动力! 一定要点击如下的卡片,那是获取资料的入口! 【全网最全】2024年数学建模国赛A题30页完整建模文档+17页成品论文+保奖matla代码+可视化图表等(后续会更新)「首先来看看目前已有的资料,还会不断更新哦~一次购买,后续不会再被收费哦,保证是全网最全资源,随着后续内容更新,价格会上涨,越早购买,价格越低,让大家再也不需要到处买断片资料啦~💰💸👋」�

【2024高教社杯国赛C题】数学建模国赛建模过程+完整代码论文全解全析

你是否在寻找数学建模比赛的突破点?数学建模进阶思路! 作为经验丰富的数学建模团队,我们将为你带来2024国赛数学建模竞赛(C题)的全面解析。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,帮助你全面理解并掌握如何解决类似问题。 完整内容在文章末尾阅读全文获取! C题的第一问是: 假定各种农作物未来的预期销售量、种植成本、亩产量和销售价格相对于 2023 年保持稳定,每季

2024国赛论文拿奖快对照这几点及评阅要点,勿踩雷区!(国赛最后冲刺,提高获奖概率)

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ 2024“高教社杯”全国大学生数学建模竞赛已过去第三个夜晚,小伙伴们都累了没有,如果感到思维滞涩,别忘了稍作休息,放松一下自己,准备迎接国赛非常重要的收尾阶段——论文。 国赛这几天的努力最后都

2024国赛数学建模C题完整论文:农作物的种植策略

农作物种植策略优化的数学建模研究(完整论文,持续更新,大家持续关注,更新见文末名片 ) 摘要 在本文中,建立了基于整数规划、动态规划、马尔科夫决策过程、不确定性建模、多目标优化、相关性分析、蒙特卡洛模拟和鲁棒优化等多种模型的农作物种植优化模型。本文以某乡村为研究背景,考虑到该乡村的耕地资源有限、气候条件限制,以及未来可能存在的市场波动和种植风险,提出了优化农作物种植策略的数学模型,

2024数学建模国赛选题建议+团队助攻资料(已更新完毕)

目录 一、题目特点和选题建议 二、模型选择 1、评价模型 2、预测模型 3、分类模型 4、优化模型 5、统计分析模型 三、white学长团队助攻资料 1、助攻代码 2、成品论文PDF版 3、成品论文word版 9月5日晚18:00就要公布题目了,根据历年竞赛题目,可以分析A/B/C/D/E题目大概的类型,提前了解题目特点,在选题上就不会浪费过多时间。下面总结了一下5个题目各

【B题第三套完整论文已出】2024数模国赛B题第三套完整论文+可运行代码参考(无偿分享)

基于多阶段优化的电子产品质量控制与成本管理研究 摘要 随着现代制造业和智能化生产的发展,质量控制和生产优化问题成为工业管理中的重要研究课题。本文针对电子产品生产过程中质量控制和成本优化中的问题,基于系统优化和决策分析思想,通过确定检测成本、次品率、装配成本等指标,以最大化利润和最小化生产成本为目标建立了多阶段质量控制优化模型,并使用穷举算法对模型进行求解。 针对问题一,本文通过对零配件的