【python海洋专题二十七】南海四季海流图

2023-10-24 01:20

本文主要是介绍【python海洋专题二十七】南海四季海流图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【python海洋专题二十七】南海四季海流图
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
往期推荐

**[[
【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件]

【python海洋专题二】读取水深nc文件并水深地形图
【python海洋专题三】图像修饰之画布和坐标轴

【Python海洋专题四】之水深地图图像修饰

【Python海洋专题五】之水深地形图海岸填充

【Python海洋专题六】之Cartopy画地形水深图

【python海洋专题】测试数据

【Python海洋专题七】Cartopy画地形水深图的陆地填充

【python海洋专题八】Cartopy画地形水深图的contourf填充间隔数调整

【python海洋专题九】Cartopy画地形等深线图

【python海洋专题十】Cartopy画特定区域的地形等深线图

【python海洋专题十一】colormap调色

【python海洋专题十二】年平均的南海海表面温度图

【python海洋专题十三】读取多个nc文件画温度季节变化图

【python海洋专题十四】读取多个盐度nc数据画盐度季节变化图

【python海洋专题十五】给colorbar加单位

【python海洋专题十六】对大陆周边的数据进行临近插值

【python海洋专题十七】读取几十年的OHC数据,画四季图

【python海洋专题十八】读取Soda数据,画subplot的海表面高度四季变化图

【python海洋专题十九】找范围的语句进阶版本

【python海洋专题二十】subplots_adjust布局调整

【python海洋专题二十一】subplots共用一个colorbar

【python海洋专题二十二】在海图上text

【python海洋专题二十三】共用坐标轴

【python海洋专题二十四】南海年平均海流图
【python海洋专题二十五】给南海年平均海流+scale
【python海洋专题二十六】南海海流流速图

【python海洋专题二十七】南海四季海流图

【python海洋专题二十八】南海四季海流流速图

【MATLAB海洋专题】历史汇总

【matlab海洋专题】高级玫瑰图–风速风向频率玫瑰图–此图细节较多
【matlab程序】图片平面制作||文末点赞分享||海报制作等

大佬推荐一下物理海洋教材吧?

在这里插入图片描述


# -*- coding: utf-8 -*-
# ---导入数据读取和处理的模块-------
from netCDF4 import Dataset
from pathlib import Path
import xarray as xr
import numpy as np
# ------导入画图相关函数--------
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
import matplotlib.ticker as ticker
from cartopy import mpl
import cartopy.crs as ccrs
import cartopy.feature as feature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from pylab import *
# -----导入颜色包---------
import seaborn as sns
from matplotlib import cm
import palettable
from palettable.cmocean.diverging import Delta_4
from palettable.colorbrewer.sequential import GnBu_9
from palettable.colorbrewer.sequential import Blues_9
from palettable.scientific.diverging import Roma_20
from palettable.cmocean.diverging import Delta_20
from palettable.scientific.diverging import Roma_20
from palettable.cmocean.diverging import Balance_20
from matplotlib.colors import ListedColormap
#     -------导入插值模块-----
from scipy.interpolate import interp1d  # 引入scipy中的一维插值库
from scipy.interpolate import griddata  # 引入scipy中的二维插值库
from scipy.interpolate import interp2d# ----define reverse_colourmap定义颜色的反向函数----
def reverse_colourmap(cmap, name='my_cmap_r'):reverse = []k = []for key in cmap._segmentdata:k.append(key)channel = cmap._segmentdata[key]data = []for t in channel:data.append((1 - t[0], t[2], t[1]))reverse.append(sorted(data))LinearL = dict(zip(k, reverse))my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)return my_cmap_r# ---colormap的读取和反向----
cmap01 = Balance_20.mpl_colormap
cmap0 = Blues_9.mpl_colormap
cmap_r = reverse_colourmap(cmap0)
cmap1 = GnBu_9.mpl_colormap
cmap_r1 = reverse_colourmap(cmap1)
cmap2 = Roma_20.mpl_colormap
cmap_r2 = reverse_colourmap(cmap2)
# ---read_data---
f1 = xr.open_dataset(r'E:\data\soda\soda3.12.2_5dy_ocean_reg_2017.nc')
print(f1)
# # 提取经纬度(这样就不需要重复读取)
lat = f1['yt_ocean'].data
lon = f1['xt_ocean'].data
u = f1['u'].data
v = f1['v'].data
depth = f1['st_ocean'].data
# print(depth)
time = f1['time'].data
# print(time)
# # -------- find scs 's temp-----------
ln1 = np.where(lon >= 100)[0][0]
ln2 = np.where(lon >= 125)[0][0]
la1 = np.where(lat >= 0)[0][0]
la2 = np.where(lat >= 25)[0][0]
# time_all=[(time>=1058760) & (time<=1059096)]   #13-27 Oct
# # # 画图网格
lon1 = lon[ln1:ln2]
lat1 = lat[la1:la2]
X, Y = np.meshgrid(lon1, lat1)
u_aim = u[:, 0, la1:la2, ln1:ln2]
v_aim = v[:, 0, la1:la2, ln1:ln2]
# # # ----------对时间维度求平均 得到年平均的current------------------
u_year_mean = np.mean(u_aim[:, :, :], axis=0)
v_year_mean = np.mean(v_aim[:, :, :], axis=0)
# ------春夏秋冬------
u_spr_mean = np.mean(u_aim[2:5, :, :], axis=0)
u_sum_mean = np.mean(u_aim[5:8, :, :], axis=0)
u_atu_mean = np.mean(u_aim[8:11, :, :], axis=0)
u_win_mean = (u_aim[0, :, :] + u_aim[1, :, :] + u_aim[11, :, :]) / 3
v_spr_mean = np.mean(v_aim[2:5, :, :], axis=0)
v_sum_mean = np.mean(v_aim[5:8, :, :], axis=0)
v_atu_mean = np.mean(v_aim[8:11, :, :], axis=0)
v_win_mean = (v_aim[0, :, :] + v_aim[1, :, :] + v_aim[11, :, :]) / 3
# ----plot--------------
scale = '50m'
plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["mathtext.fontset"] = 'cm'  # 数学文字字体
mpl.rcParams["font.size"] = 12  # 字体大小
mpl.rcParams["axes.linewidth"] = 1  # 轴线边框粗细(默认的太粗了)
fig = plt.figure(dpi=300, figsize=(3.2, 2.6), facecolor='w', edgecolor='blue')  # 设置一个画板,将其返还给fig
# 通过subplots_adjust()设置间距配置
fig.subplots_adjust(left=0.1, bottom=0.05, right=0.9, top=0.95, wspace=0.05, hspace=0.15)
# --------第一个子图----------
ax = fig.add_subplot(2, 2, 1, projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face', zorder=1,facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3, zorder=2)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
cs = ax.quiver(X, Y, u_spr_mean, v_spr_mean, color='k', scale=5, zorder=0, width=0.003, headwidth=3,headlength=4.5, transform=ccrs.PlateCarree())
font = {'family': 'serif','weight': 'normal','size': 4,}
ax.quiverkey(cs,  # 传入quiver句柄X=0.9, Y=1.015,  # 确定 label 所在位置,都限制在[0,1]之间U=0.5,  # 参考箭头长度 表示风速为5m/s。angle=0,  # 参考箭头摆放角度。默认为0,即水平摆放label='0.5m/s',  # 箭头的补充:label的内容  +labelsep=0.01,labelpos='N',  # label在参考箭头的哪个方向; S表示南边color='r', labelcolor='r',  # 箭头颜色 + label的颜色fontproperties=font,  # l abel 的字体设置:大小,样式,weightzorder=10,)
# --------------添加标题----------------
ax.set_title('春季', loc="center", fontsize=6, pad=1)
# ------------------利用Formatter格式化刻度标签-----------------
ax.set_xticks(np.arange(100, 123, 5), crs=ccrs.PlateCarree())  # 添加经纬度
ax.set_xticklabels(np.arange(100, 123, 5), fontsize=4)
ax.set_yticks(np.arange(0, 25, 5), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(0, 25, 5), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(axis='x', top=True, which='major', direction='in', length=3, width=0.8, labelsize=5, pad=0.8,color='k')  # 刻度样式  pad代表标题离轴的远近
ax.tick_params(axis='y', right=True, which='major', direction='in', length=3, width=0.8, labelsize=5, pad=0.8,color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 123, 5), ylocs=np.arange(0, 25, 5),linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
# -----第二个子图# --------子图----------
ax = fig.add_subplot(2, 2, 2, projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face', zorder=1,facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3, zorder=2)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
cs = ax.quiver(X, Y, u_sum_mean, v_sum_mean, color='k', scale=5, zorder=0, width=0.003, headwidth=3,headlength=4.5, transform=ccrs.PlateCarree())
font = {'family': 'serif','weight': 'normal','size': 4,}
ax.quiverkey(cs,  # 传入quiver句柄X=0.9, Y=1.015,  # 确定 label 所在位置,都限制在[0,1]之间U=0.5,  # 参考箭头长度 表示风速为5m/s。angle=0,  # 参考箭头摆放角度。默认为0,即水平摆放label='0.5m/s',  # 箭头的补充:label的内容  +labelsep=0.01,labelpos='N',  # label在参考箭头的哪个方向; S表示南边color='r', labelcolor='r',  # 箭头颜色 + label的颜色fontproperties=font,  # l abel 的字体设置:大小,样式,weightzorder=10,)
# --------------添加标题----------------
ax.set_title('夏季', loc="center", fontsize=6, pad=1)
# ------------------利用Formatter格式化刻度标签-----------------
ax.set_xticks(np.arange(100, 123, 5), crs=ccrs.PlateCarree())  # 添加经纬度
ax.set_xticklabels(np.arange(100, 123, 5), fontsize=4)
ax.set_yticks(np.arange(0, 25, 5), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(0, 25, 5), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(axis='x', top=True, which='major', direction='in', length=3, width=0.8, labelsize=5, pad=0.8,color='k')  # 刻度样式  pad代表标题离轴的远近
ax.tick_params(axis='y', right=True, which='major', direction='in', length=3, width=0.8, labelsize=5, pad=0.8,color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 123, 5), ylocs=np.arange(0, 25, 5),linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
# -----第san个子图# --------子图----------
ax = fig.add_subplot(2, 2, 3, projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face', zorder=1,facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3, zorder=2)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
cs = ax.quiver(X, Y, u_atu_mean, v_atu_mean, color='k', scale=5, zorder=0, width=0.003, headwidth=3,headlength=4.5, transform=ccrs.PlateCarree())
font = {'family': 'serif','weight': 'normal','size': 4,}
ax.quiverkey(cs,  # 传入quiver句柄X=0.9, Y=1.015,  # 确定 label 所在位置,都限制在[0,1]之间U=0.5,  # 参考箭头长度 表示风速为5m/s。angle=0,  # 参考箭头摆放角度。默认为0,即水平摆放label='0.5m/s',  # 箭头的补充:label的内容  +labelsep=0.01,labelpos='N',  # label在参考箭头的哪个方向; S表示南边color='r', labelcolor='r',  # 箭头颜色 + label的颜色fontproperties=font,  # l abel 的字体设置:大小,样式,weightzorder=10,)
# --------------添加标题----------------
ax.set_title('秋季', loc="center", fontsize=6, pad=1)
# ------------------利用Formatter格式化刻度标签-----------------
ax.set_xticks(np.arange(100, 123, 5), crs=ccrs.PlateCarree())  # 添加经纬度
ax.set_xticklabels(np.arange(100, 123, 5), fontsize=4)
ax.set_yticks(np.arange(0, 25, 5), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(0, 25, 5), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(axis='x', top=True, which='major', direction='in', length=3, width=0.8, labelsize=5, pad=0.8,color='k')  # 刻度样式  pad代表标题离轴的远近
ax.tick_params(axis='y', right=True, which='major', direction='in', length=3, width=0.8, labelsize=5, pad=0.8,color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 123, 5), ylocs=np.arange(0, 25, 5),linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
# -----第四个子图# --------子图----------
ax = fig.add_subplot(2, 2, 4, projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face', zorder=1,facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3, zorder=2)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
cs = ax.quiver(X, Y, u_win_mean, v_win_mean, color='k', scale=5, zorder=0, width=0.003, headwidth=3,headlength=4.5, transform=ccrs.PlateCarree())
font = {'family': 'serif','weight': 'normal','size': 4,}
ax.quiverkey(cs,  # 传入quiver句柄X=0.9, Y=1.015,  # 确定 label 所在位置,都限制在[0,1]之间U=0.5,  # 参考箭头长度 表示风速为5m/s。angle=0,  # 参考箭头摆放角度。默认为0,即水平摆放label='0.5m/s',  # 箭头的补充:label的内容  +labelsep=0.01,labelpos='N',  # label在参考箭头的哪个方向; S表示南边color='r', labelcolor='r',  # 箭头颜色 + label的颜色fontproperties=font,  # l abel 的字体设置:大小,样式,weightzorder=10,)
# --------------添加标题----------------
ax.set_title('冬季', loc="center", fontsize=6, pad=1)
# ------------------利用Formatter格式化刻度标签-----------------
ax.set_xticks(np.arange(100, 123, 5), crs=ccrs.PlateCarree())  # 添加经纬度
ax.set_xticklabels(np.arange(100, 123, 5), fontsize=4)
ax.set_yticks(np.arange(0, 25, 5), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(0, 25, 5), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(axis='x', top=True, which='major', direction='in', length=3, width=0.8, labelsize=5, pad=0.8,color='k')  # 刻度样式  pad代表标题离轴的远近
ax.tick_params(axis='y', right=True, which='major', direction='in', length=3, width=0.8, labelsize=5, pad=0.8,color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 123, 5), ylocs=np.arange(0, 25, 5),linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
plt.savefig('subplot_current_1.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
plt.show()

这篇关于【python海洋专题二十七】南海四季海流图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271732

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点