C++设计模式_11_builder 构建器(小模式,不太常用)

2023-10-23 15:46

本文主要是介绍C++设计模式_11_builder 构建器(小模式,不太常用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

builder 构建器也是属于“对象创建模式”模式的一种,是一个不常用,比较小的模式。

文章目录

  • 1. 动机(Motivation)
  • 2. 代码演示builder 构建器
    • 2.1 builder 构建器模式的形式1方法
    • 2.2 builder 构建器模式的形式2方法
    • 2.3 两种形式总结
  • 3. 模式定义
  • 4. 结构(Structure)
  • 5. 要点总结
  • 6. 其他参考

1. 动机(Motivation)

  • 在软件系统中,有时候面临着“一个复杂对象”的创建工作,其通常由各个部分的子对象用一定的算法构成;由于需求的变化,这个复杂对象的各个部分经常面临着剧烈的变化,但是将它们组合在一起的算法却相对稳定

此处的描述与Template Method的描述相似,但是主要解决的是对象创建的问题

  • 如何应对这种变化?如何提供一种“封装机制”来隔离出“复杂对象的各个部分”的变化,从而保持系统中的“稳定构建算法”不随着需求改变而改变?

2. 代码演示builder 构建器

假设游戏中需要建房子,可能建茅草屋、砖瓦房、豪华房,但是建房子具有固定的几个流程,包括:地板、地基、窗户、房顶,但是不同房子的窗户、门等的构造方式可能不一样。

2.1 builder 构建器模式的形式1方法

假设构建窗户、门等是几个步骤

	virtual void BuildPart1()=0;virtual void BuildPart2()=0;virtual void BuildPart3()=0;virtual void BuildPart4()=0;virtual void BuildPart5()=0;

构造房子的固定流程如下:

	void Init(){//构造Part1this->BuildPart1();for (int i = 0; i < 4; i++){//开四面窗户this->BuildPart2();}//构造判断某些变量bool flag=this->BuildPart3();//根据BuildPart3结果来判断是否BuildPart4if(flag){this->BuildPart4();}this->BuildPart5();}

现在的问题是每一个构建子步骤是变化的,因此将其实现为虚函数。整个构建的流程是稳定的,因此将其放到一个算法里面。整体代码如下:

class House{public:void Init(){//构造Part1this->BuildPart1();for (int i = 0; i < 4; i++){//开四面窗户this->BuildPart2();}//构造判断某些变量bool flag=this->BuildPart3();//根据BuildPart3结果来判断是否BuildPart4if(flag){this->BuildPart4();}this->BuildPart5();}virtual ~House(){}protected:virtual void BuildPart1()=0;virtual void BuildPart2()=0;virtual void BuildPart3()=0;virtual void BuildPart4()=0;virtual void BuildPart5()=0;};

这样写下来就会发现其整个流程真的很像Template Method模板方法。

那么首先有一个问题,既然是构建一个对象,是否可以写为构造函数呢?得到如下代码:

class House{public:House(){//构造Part1this->BuildPart1(); //静态绑定for (int i = 0; i < 4; i++){//开四面窗户this->BuildPart2();}//构造判断某些变量bool flag=this->BuildPart3();//根据BuildPart3结果来判断是否BuildPart4if(flag){this->BuildPart4();}this->BuildPart5();}virtual ~House(){}protected:virtual void BuildPart1()=0;virtual void BuildPart2()=0;virtual void BuildPart3()=0;virtual void BuildPart4()=0;virtual void BuildPart5()=0;};

答案是不能的,这是因为在C++中比较特殊,在构造函数中调用虚函数的话,它完全是静态绑定,而不是动态绑定,举例来说:this->BuildPart1();应该调用virtual void BuildPart1()=0;的实现,但此处没实现,所以会报错的。

在构造函数中,虚函数是不可以调用子类的虚函数override的版本,这是因为子类的构造函数是先调用父类的构造函数,如果允许this->BuildPart1();动态绑定的话,子类的构造函数需要先调用House的构造函数,House的构造函数再去调用子类的override的版本的话,就会在子类的构造函数还没完成,子类的虚函数先被调用,这就违背对象的基本伦理,得子类先生下来,才能行使行为。在其他语言中可以实现动态绑定。

假设构建石头房子,得到如下:

class House{public:void Init(){//构造Part1this->BuildPart1();for (int i = 0; i < 4; i++){//开四面窗户this->BuildPart2();}//构造判断某些变量bool flag=this->BuildPart3();//根据BuildPart3结果来判断是否BuildPart4if(flag){this->BuildPart4();}this->BuildPart5();}virtual ~House(){}protected:virtual void BuildPart1()=0;virtual void BuildPart2()=0;virtual void BuildPart3()=0;virtual void BuildPart4()=0;virtual void BuildPart5()=0;};//构建石头房子
class StoneHouse: public House{
protected:virtual void BuildPart1(){//pHouse->Part1 = ...;}virtual void BuildPart2(){}virtual void BuildPart3(){}virtual void BuildPart4(){}virtual void BuildPart5(){}};int main ()
{
House* pHouse = new StoneHouseBuilder;	
pHouse->Init();
}

当然如果需要构建茅草房等也是类似的,按理来说Builder模式,写到此时已经是OK了。

2.2 builder 构建器模式的形式2方法

但是做到此处仍有优化的空间,某些情况下对象过于复杂,除了上面的Init(),还要实现其他字段,如果搅在一起会很麻烦,需要进行拆分。马丁福乐重构理论中讲到:不能有太肥的类,类的行为代码太多就不太好,构建过程如此复杂,需要将其提取出来,变成一个单独的类的行为,一般会将类进行拆分,一部分是本身类的状态和行为,另一部分是专门做构建的。此例中将House类中的Init()拆分为一个单独的类。

class House{//....
};class HouseBuilder {
public:House* GetResult(){return pHouse;}virtual ~HouseBuilder(){}
protected:House* pHouse;virtual void BuildPart1()=0;virtual void BuildPart2()=0;virtual void BuildPart3()=0;virtual void BuildPart4()=0;virtual void BuildPart5()=0;};class StoneHouse: public House{};class StoneHouseBuilder: public HouseBuilder{
protected:virtual void BuildPart1(){//pHouse->Part1 = ...;}virtual void BuildPart2(){}virtual void BuildPart3(){}virtual void BuildPart4(){}virtual void BuildPart5(){}};//稳定的,重写的时候只需要重写此类
class HouseDirector{public:HouseBuilder* pHouseBuilder;HouseDirector(HouseBuilder* pHouseBuilder){this->pHouseBuilder=pHouseBuilder;}House* Construct(){pHouseBuilder->BuildPart1();for (int i = 0; i < 4; i++){pHouseBuilder->BuildPart2();}bool flag=pHouseBuilder->BuildPart3();if(flag){pHouseBuilder->BuildPart4();}pHouseBuilder->BuildPart5();return pHouseBuilder->GetResult(); }
};

就是上面的方式,使得构建的过程会发现,将House和HouseBuilder相分离,这样之后,具体再去实现的时候可以有一个GetResult(),外接就能拿到pHouse指针了,这样演化已经够了。

2.3 两种形式总结

  • 两种形式均是属于builder构建器模式;
  • 根据类的复杂程度决定使用形式1或者形式2,简单的情况下使用形式1,复杂的情况下使用形式2

3. 模式定义

将一个复杂对象的构建与其表示相分离,使得同样的构建过程(稳定)可以创建不同的表示(变化)。
——《设计模式》GoF

如果只是做到最初的版本已经够了,最后复杂的版本是考虑将一个复杂对象的构建与其表示相分离,House是表示,HouseBuilder是构建。同样的构建过程为:

   House* Construct(){pHouseBuilder->BuildPart1();for (int i = 0; i < 4; i++){pHouseBuilder->BuildPart2();}bool flag=pHouseBuilder->BuildPart3();if(flag){pHouseBuilder->BuildPart4();}pHouseBuilder->BuildPart5();return pHouseBuilder->GetResult(); }

4. 结构(Structure)

在这里插入图片描述

上图是《设计模式》GoF中定义的builder 构建器的设计结构。结合上面的代码看图中最重要的是看其中稳定和变化部分,也就是下图中红框和蓝框框选的部分。
在这里插入图片描述

这只是一种演化的形式,其实Director和Builder像最初代码中合并的形式也是可以的,主要看类的复杂度,重构原则上是类类复杂就拆拆拆,类简单就是合并合并

5. 要点总结

  • Builder 模式主要用于“分步骤构建一个复杂的对象”。在这其中“分步骤”是一个稳定的算法,而复杂对象的各个部分则经常变化。

房子整体流程稳定,房子的各个部分窗户等是变化的

  • 变化点在哪里,封装哪里—— Builder模式主要在于应对“复杂对象各个部分”的频繁需求变动。其缺点在于难以应对“分步骤构建算法”的需求变动。

  • 在Builder模式中,要注意不同语言中构造器内调用虚函数的差别(C++ vs. C#) 。

C++中不能直接调用虚函数,这也是将Builder移出去的部分原因,但是在C#,java是可以的

6. 其他参考

C++设计模式——建造者模式

这篇关于C++设计模式_11_builder 构建器(小模式,不太常用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/268817

相关文章

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方