算法进修Day-36

2023-10-23 14:36
文章标签 算法 36 day 进修

本文主要是介绍算法进修Day-36,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法进修Day-36

71. 简化路径

难度:中等
题目要求:
给你一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路径 (以 '/' 开头),请你将其转化为更加简洁的规范路径。

在 Unix 风格的文件系统中,一个点(.)表示当前目录本身;此外,两个点 (..) 表示将目录切换到上一级(指向父目录);两者都可以是复杂相对路径的组成部分。任意多个连续的斜杠(即,'//')都被视为单个斜杠 '/' 。 对于此问题,任何其他格式的点(例如,'...')均被视为文件/目录名称。

请注意,返回的 规范路径 必须遵循下述格式:

  • 始终以斜杠 '/' 开头。
  • 两个目录名之间必须只有一个斜杠 '/'
  • 最后一个目录名(如果存在)不能'/' 结尾。
  • 此外,路径仅包含从根目录到目标文件或目录的路径上的目录(即,不含 '.''..')。

返回简化后得到的 规范路径

示例1

输入:path = “/home/”
输出:“/home”

示例2

输入:path = “/…/”
输出:“/”

示例3

输入:path = “/home//foo/”
输出:“/home/foo”

示例4

输入:path = “/a/./b/…/…/c/”
输出:“/c”

题解

提供两条API内容解释:

  • System.IO.Path.TrimEndingDirectorySeparator(String)
    • 剪裁一个超出指定路径根目录的尾随目录分隔符。
  • System.IO.Path.GetFullPath(String)
    • 返回指定路径字符串的绝对路径。

想法代码

class Solution
{public static void Main(String[] args){string path = "/../";Solution solution = new Solution();string res = solution.SimplifyPath(path);Console.WriteLine(res);}public string SimplifyPath(string path){return Path.TrimEndingDirectorySeparator(Path.GetFullPath(path));}
}

72. 编辑距离

难度:困难
题目要求
给你两个单词 word1word2请返回将 word1 转换成 word2 所使用的最少操作数

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例1

输入:word1 = “horse”, word2 = “ros”
输出:3

示例2

输入:word1 = “intention”, word2 = “execution”
输出:5

题解

利用动态规划,用 m m m n n n 分别表示字符串 w o r d 1 word_1 word1 w o r d 2 word_2 word2 的长度,对于满足 1 ≤ i ≤ m 1\leq i\leq m 1im 1 ≤ j ≤ n 1\leq j\leq n 1jn 的每个下标对 ( i , j ) (i,j) (i,j),需要分别计算将 w o r d 1 word_1 word1 的前 i i i 个字符转换成 w o r d 2 word_2 word2 的前 j j j 个字符的最小操作数

创建 ( m + 1 ) ∗ ( n + 1 ) (m+1)*(n+1) (m+1)(n+1) 的二维数组 d p dp dp,其中 d p [ i ] [ j ] dp[i][j] dp[i][j] 为将 w o r d 1 word_1 word1 的前 i i i 个字符转换成 w o r d 2 word_2 word2 的前 j j j 个字符的最小操作数

如果 i = 0 i=0 i=0,则对于任意 j j j,需要将 w o r d 2 word_2 word2 的前 j j j 个字符全部删除,最少操作数是 j j j,如果 j = 0 j=0 j=0,则对于任意 i i i,需要将 w o r d 1 word_1 word1 的前 i i i 个字符全部删除,最少操作数是 i i i,因此动态规划边界为:对于任意 0 ≤ j ≤ n , d p [ 0 ] [ j ] = j 0\leq j\leq n, dp[0][j]=j 0jn,dp[0][j]=j,对于任意 0 ≤ i ≤ m , d p [ i ] [ 0 ] = i 0\leq i\leq m, dp[i][0]=i 0im,dp[i][0]=i,当然, d p [ 0 ] [ 0 ] = 0 dp[0][0]=0 dp[0][0]=0

1 ≤ i ≤ m 1\leq i\leq m 1im 1 ≤ j ≤ n 1\leq j\leq n 1jn 时,让 c 1 = w o r d 1 [ i − 1 ] , c 2 = w o r d 2 [ j − 1 ] c_1=word_1[i-1], c_2=word_2[j-1] c1=word1[i1],c2=word2[j1],总共分为两种情况

  • c 1 = c 2 c_1=c_2 c1=c2,将 c 1 c_1 c1 c 2 c_2 c2 成为公共字符,将 w o r d 1 word_1 word1 的前 i − 1 i-1 i1 个字符的最小操作数是 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1],所以 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] dp[i][j]=dp[i-1][j-1] dp[i][j]=dp[i1][j1]
  • c 1 ≠ c 2 c_1\neq c_2 c1=c2 时,计算将 w o r d 1 word_1 word1 的前 i i i 个字符串转换成 w o r d 2 word_2 word2 的前 j j j 个字符的最少操作数时需要考虑三种可能的操作,取其中的最小操作数作为 d p [ i ] [ j ] dp[i][j] dp[i][j]
    • 第一种操作是插入字符 c 1 c_1 c1,操作之前的最少操作数是 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j],操作之后的最少操作数是 d p [ i − 1 ] [ j ] + 1 dp[i-1][j]+1 dp[i1][j]+1
    • 第二种操作是删除字符 c 2 c_2 c2,操作之前的最少操作数是 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1],操作之后的最少操作数是 d p [ i ] [ j − 1 ] + 1 dp[i][j-1]+1 dp[i][j1]+1
    • 第三种操作是将字符 c 1 c_1 c1 替换为 c 2 c_2 c2,操作之前的最少操作数是 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1],操作之后的最少操作数是 d p [ i − 1 ] [ j − 1 ] + 1 dp[i-1][j-1]+1 dp[i1][j1]+1

动态规划转移方程如下
d p [ i ] [ j ] = { d p [ i − 1 ] [ j − 1 ] , word1[i-1]=word2[j-1] m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j − 1 ] ) + 1 , word1[i-1]!=word2[j-1]  dp[i][j]=\begin{cases} dp[i-1][j-1],&\text{word1[i-1]=word2[j-1]}\\min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1,&\text{word1[i-1]!=word2[j-1] } \end{cases} dp[i][j]={dp[i1][j1],min(dp[i1][j],dp[i][j1],dp[i1][j1])+1,word1[i-1]=word2[j-1]word1[i-1]!=word2[j-1] 

根据动态规划转移方程,计算 d p [ i ] [ j ] dp[i][j] dp[i][j] 的顺序为从小到大遍历每个 i i i,对于每个 i i i 从小到大遍历每个 j j j。最后 d p [ m ] [ n ] dp[m][n] dp[m][n] 即为最少操作数

想法代码

public class Solution
{public static void Main(string[] args){Solution solution = new Solution();string word1 = "horse";string word2 = "ros";Console.WriteLine(solution.MinDistance(word1,word2));}public int MinDistance(string word1, string word2){int m = word1.Length, n = word2.Length;int[][] dp = new int[m + 1][];for (int i = 0; i <= m; i++){dp[i] = new int[n + 1];}for (int j = 1; j <= n; j++){dp[0][j] = j;}for (int i = 1; i <= m; i++){dp[i][0] = i;}for (int i = 1; i <= m; i++){char c1 = word1[i - 1];for (int j = 1; j <= n; j++){char c2 = word2[j - 1];if (c1 == c2){dp[i][j] = dp[i - 1][j - 1];}else{dp[i][j] = Math.Min(Math.Min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;}}}return dp[m][n];}
}

这篇关于算法进修Day-36的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/268478

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第