使用Python+OpenCV统计每日用电量(附代码演练)

2023-10-23 11:50

本文主要是介绍使用Python+OpenCV统计每日用电量(附代码演练),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

‍Hexing 预付费电表归PLN所有。这个工具可以用来代替必须由操作人员手动记录的模拟仪表。现在用预付的电表,我可以从KWH,安培,电压和我的信用卡中看到更准确的测量。

本文将是一个使用OpenCV库读取预付表测量值的示例。目前,我使用raspberry pi 4来运行我的代码,使用尺寸为4 x 3.1 x 2.5cm的相机。如果你想要扩展USB线,我建议设置USB线的最大长度为3米。超过3米会失去USB信号,导致摄像头无法连接。

将相机面对预付费电表脉冲LED灯:

设置好相机后,如上图所示,就可以开始测量了。

让我们编码!

kwh_pln_sensor.py

我用这个代码实时监控脉冲LED灯

首先,导入所需的库

from sqlalchemy import create_engine
import cv2
import numpy as np
import pandas as pd
import datetime
import time
  • sqlalchemy是连接数据库(对象关系映射器)的助手,在本例中为PostgreSQL

  • cv2(开源的计算机视觉库,或称为OpenCV):这个python库可以帮助从相机中过滤出像素颜色,用于过滤红色

  • pandas使创建矩阵列和行以将数据保存到数据库变得更容易

  • datetimetime,管理日期和时间格式的库

如果发现ModuleNotFoundError错误,则应该首先安装库

pip install opencv-python
pip install sqlalchemy
pip install pandas

创建连接数据库的引擎

conn = 
create_engine("postgresql+psycopg2://root:12345678@localhost:5432/plnstats").connect()

我用root用户名和密码12345678在本地主机服务器端口5432上创建了名为plnstats的数据库

初始化相机并捕获它。

cap = cv2.VideoCapture(0)
(ret, frame) = cap.read()

cv2.VideoCapture(0),你可以根据计算机视频设备索引将索引从0更改为1、2,…等。

cap.read()从相机读取正确的状态帧和图像帧

while True:
(ret, frame) = cap.read()
size = frame.size
image = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

将原始帧转换为RGB颜色,image= cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

为了使用遮罩滤镜,设置RGB的上下限,我尝试确定恒定的RGB并应用代码

lower = np.array([168, 25, 0])
upper = np.array([179, 255, 255])
mask = cv2.inRange(image, lower, upper)

计算红色与非红色的百分比

no_red = cv2.countNonZero(mask)
frac_red = np.divide(float(no_red), size)
percent_red = np.multiply((float(frac_red)), 100)

设置阈值,这取决于相机,我使用阈值10.0

if (percent_red >= 10.0):

保存到pd.DataFrame

data_capture = {
'color_percentage': percent_red,
'created_on': datetime.datetime.now()
}
df = pd.DataFrame(columns=['color_percentage','created_on'],data=data_capture,index=[0])

并保存到数据库中

df.to_sql('home_pln_kwh_sensor', schema='public', con=conn, if_exists='append',index=False)

这是kwh_pln_sensor.py的完整代码

from sqlalchemy import create_engine
import cv2
import numpy as np
import pandas as pd
import datetime
import timeconn = create_engine("postgresql+psycopg2://root:12345678@localhost:5432/plnstats").connect()cap = cv2.VideoCapture(0)
(ret, frame) = cap.read()capture_status = Truewhile capture_status:(ret, frame) = cap.read()size = frame.sizeimage = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)lower = np.array([168, 25, 0])upper = np.array([179, 255, 255])mask = cv2.inRange(image, lower, upper)no_red = cv2.countNonZero(mask)frac_red = np.divide(float(no_red), size)percent_red = np.multiply((float(frac_red)), 100)print(percent_red)    if (percent_red >= 10.0): #estimated from the red colour percentage impulse LED lampdata_capture = {'color_percentage': percent_red,'created_on': datetime.datetime.now()}df = pd.DataFrame(columns=['color_percentage','created_on'],data=data_capture,index=[0])df.to_sql('home_pln_kwh_sensor', schema='public', con=conn, if_exists='append',index=False)cap.release()
cv2.destroyAllWindows()

可以删除第31行中的代码。该语句将帮助你检查相机是否成功捕捉到LED闪烁

那么如何总结传感器捕获?

我想提取关于小时使用情况和信用卡使用的信息。之后,我就可以估计自己在家的使用情况,并在我的信用卡被清空之前被注意到。

kwh_pln_calculate.py

与前面一样,导入所需的库

import pandas as pd
from datetime import datetime,timedelta
from sqlalchemy import create_engine

我用timedelta来得到昨天的日期(你也可以用来计算不同的时间)

创建常量。IMPULSE_KWH = 1000表示每1000个LED闪烁表示1千瓦时,RUPIAH_PER_KWH = 1444.70表示R-1型/TR 1.301-2.200 VA为1444.70卢比

IMPULSE_KWH = 1000 
RUPIAH_PER_KWH = 1444.70

这一天的值和昨天的值,格式为年-月-日

now_date = datetime.now().strftime('%Y-%m-%d')
yesterday_date = datetime.now() - timedelta(days=1)
yesterday_date = yesterday_date.strftime('%Y-%m-%d')

连接PostgreSQL数据库

conn = create_engine("postgresql+psycopg2://root:12345678@localhost:5432/plnstats").connect()

我想总结一下昨天kWh的使用情况

df = pd.read_sql(sql='SELECT color_percentage, created_on from public.home_pln_kwh_sensor where created_on >= \'{yesterday} 00:00:00\' and created_on < \'{currdate} 00:00:00\''.format(yesterday=yesterday_date,currdate=now_date),con=conn)

将created_on列转换为pandas datetime

df['created_on'] = pd.to_datetime(df.created_on)
df['created_on'] = df['created_on'].dt.strftime('%Y-%m-%d %H:%M:%S')

规格化数据,其中一秒只有一个LED闪烁

df = df.drop_duplicates(subset=['created_on'])

每小时写一栏,以获取更多说明

df['created_on'] = pd.to_datetime(df.created_on)
df['hour'] = df['created_on'].dt.strftime('%H')
df['day'] =  df['created_on'].dt.strftime('%Y-%m-%d')

创建一天的清单以检查每天的信用卡使用情况

list_day = list(df['day'].unique())

创建一个新的数据帧进行总结

df_summary = pd.DataFrame(columns=['day','hour','sum_impulse','charges_amount'])

计算

for dday in list_day:
list_hour = list(df[df['day'] == str(dday)]['hour'].unique())
for y in list_hour:
wSumKWH = df[(df['day'] == str(dday)) & (df['hour'] == str(y))]
df_summary = df_summary.append({'hour':y,'day':dday,'sum_impulse':wSumKWH.groupby('hour').count()['day'][0],'charges_amount':(wSumKWH.groupby('hour').count()['day'][0])*RUPIAH_PER_KWH/IMPULSE_KWH},ignore_index=True)
df_summary.to_sql('home_pln_kwh_hour', schema='public', con=conn, if_exists='append', index=False)
credit_summary = df_summary[df_summary['day'] == yesterday_date].groupby('day').sum()
credit_summary.to_sql('home_pln_kwh_summary', schema='public', con=conn, if_exists='append', index=True)

你可以在数据库中查询摘要,也可以像这样从数据帧中提取摘要

图1为传感器每小时的分组,图2为千瓦时*千瓦时价格计算后的总结

然后,你可以看到每小时的最高价格。

这是kwh_pln_calculate.py的完整代码

import pandas as pd
from datetime import datetime,timedelta
from sqlalchemy import create_engineIMPULSE_KWH = 1000 #depends on prepaid meter
RUPIAH_PER_KWH = 1444.70  # R-1/TR 1.301 – 2.200 VAdef run_cron():now_date = datetime.now().strftime('%Y-%m-%d')yesterday_date = datetime.now() - timedelta(days=1)yesterday_date = yesterday_date.strftime('%Y-%m-%d')conn = create_engine("postgresql+psycopg2://root:12345678@localhost:5432/plnstats").connect()df = pd.read_sql(sql='SELECT color_percentage, created_on from public.home_pln_kwh_sensor where created_on >= \'{yesterday} 00:00:00\' and created_on < \'{currdate} 00:00:00\''.format(yesterday=yesterday_date,currdate=now_date),con=conn)df['created_on'] = pd.to_datetime(df.created_on)df['created_on'] = df['created_on'].dt.strftime('%Y-%m-%d %H:%M:%S')df = df.drop_duplicates(subset=['created_on'])df['created_on'] = pd.to_datetime(df.created_on)df['hour'] = df['created_on'].dt.strftime('%H')df['day'] =  df['created_on'].dt.strftime('%Y-%m-%d')list_day = list(df['day'].unique())df_summary = pd.DataFrame(columns=['day','hour','sum_impulse','charges_amount'])#DETAIL PER HOURfor dday in list_day:list_hour = list(df[df['day'] == str(dday)]['hour'].unique())for y in list_hour:wSumKWH = df[(df['day'] == str(dday)) & (df['hour'] == str(y))]df_summary = df_summary.append({'hour':y,'day':dday,'sum_impulse':wSumKWH.groupby('hour').count()['day'][0],'charges_amount':(wSumKWH.groupby('hour').count()['day'][0])*RUPIAH_PER_KWH/IMPULSE_KWH},ignore_index=True)df_summary.to_sql('home_pln_kwh_hour', schema='public', con=conn, if_exists='append', index=False)credit_summary = df_summary[df_summary['day'] == yesterday_date].groupby('day').sum()credit_summary.to_sql('home_pln_kwh_summary', schema='public', con=conn, if_exists='append', index=True)if __name__ == '__main__':run_cron()

谢谢你的阅读,希望你可以用它来衡量每个月的用电量

☆ END ☆

如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 mthler」,每日朋友圈更新一篇高质量博文。

扫描二维码添加小编↓

这篇关于使用Python+OpenCV统计每日用电量(附代码演练)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/267636

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected