使用Python+OpenCV统计每日用电量(附代码演练)

2023-10-23 11:50

本文主要是介绍使用Python+OpenCV统计每日用电量(附代码演练),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

‍Hexing 预付费电表归PLN所有。这个工具可以用来代替必须由操作人员手动记录的模拟仪表。现在用预付的电表,我可以从KWH,安培,电压和我的信用卡中看到更准确的测量。

本文将是一个使用OpenCV库读取预付表测量值的示例。目前,我使用raspberry pi 4来运行我的代码,使用尺寸为4 x 3.1 x 2.5cm的相机。如果你想要扩展USB线,我建议设置USB线的最大长度为3米。超过3米会失去USB信号,导致摄像头无法连接。

将相机面对预付费电表脉冲LED灯:

设置好相机后,如上图所示,就可以开始测量了。

让我们编码!

kwh_pln_sensor.py

我用这个代码实时监控脉冲LED灯

首先,导入所需的库

from sqlalchemy import create_engine
import cv2
import numpy as np
import pandas as pd
import datetime
import time
  • sqlalchemy是连接数据库(对象关系映射器)的助手,在本例中为PostgreSQL

  • cv2(开源的计算机视觉库,或称为OpenCV):这个python库可以帮助从相机中过滤出像素颜色,用于过滤红色

  • pandas使创建矩阵列和行以将数据保存到数据库变得更容易

  • datetimetime,管理日期和时间格式的库

如果发现ModuleNotFoundError错误,则应该首先安装库

pip install opencv-python
pip install sqlalchemy
pip install pandas

创建连接数据库的引擎

conn = 
create_engine("postgresql+psycopg2://root:12345678@localhost:5432/plnstats").connect()

我用root用户名和密码12345678在本地主机服务器端口5432上创建了名为plnstats的数据库

初始化相机并捕获它。

cap = cv2.VideoCapture(0)
(ret, frame) = cap.read()

cv2.VideoCapture(0),你可以根据计算机视频设备索引将索引从0更改为1、2,…等。

cap.read()从相机读取正确的状态帧和图像帧

while True:
(ret, frame) = cap.read()
size = frame.size
image = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

将原始帧转换为RGB颜色,image= cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

为了使用遮罩滤镜,设置RGB的上下限,我尝试确定恒定的RGB并应用代码

lower = np.array([168, 25, 0])
upper = np.array([179, 255, 255])
mask = cv2.inRange(image, lower, upper)

计算红色与非红色的百分比

no_red = cv2.countNonZero(mask)
frac_red = np.divide(float(no_red), size)
percent_red = np.multiply((float(frac_red)), 100)

设置阈值,这取决于相机,我使用阈值10.0

if (percent_red >= 10.0):

保存到pd.DataFrame

data_capture = {
'color_percentage': percent_red,
'created_on': datetime.datetime.now()
}
df = pd.DataFrame(columns=['color_percentage','created_on'],data=data_capture,index=[0])

并保存到数据库中

df.to_sql('home_pln_kwh_sensor', schema='public', con=conn, if_exists='append',index=False)

这是kwh_pln_sensor.py的完整代码

from sqlalchemy import create_engine
import cv2
import numpy as np
import pandas as pd
import datetime
import timeconn = create_engine("postgresql+psycopg2://root:12345678@localhost:5432/plnstats").connect()cap = cv2.VideoCapture(0)
(ret, frame) = cap.read()capture_status = Truewhile capture_status:(ret, frame) = cap.read()size = frame.sizeimage = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)lower = np.array([168, 25, 0])upper = np.array([179, 255, 255])mask = cv2.inRange(image, lower, upper)no_red = cv2.countNonZero(mask)frac_red = np.divide(float(no_red), size)percent_red = np.multiply((float(frac_red)), 100)print(percent_red)    if (percent_red >= 10.0): #estimated from the red colour percentage impulse LED lampdata_capture = {'color_percentage': percent_red,'created_on': datetime.datetime.now()}df = pd.DataFrame(columns=['color_percentage','created_on'],data=data_capture,index=[0])df.to_sql('home_pln_kwh_sensor', schema='public', con=conn, if_exists='append',index=False)cap.release()
cv2.destroyAllWindows()

可以删除第31行中的代码。该语句将帮助你检查相机是否成功捕捉到LED闪烁

那么如何总结传感器捕获?

我想提取关于小时使用情况和信用卡使用的信息。之后,我就可以估计自己在家的使用情况,并在我的信用卡被清空之前被注意到。

kwh_pln_calculate.py

与前面一样,导入所需的库

import pandas as pd
from datetime import datetime,timedelta
from sqlalchemy import create_engine

我用timedelta来得到昨天的日期(你也可以用来计算不同的时间)

创建常量。IMPULSE_KWH = 1000表示每1000个LED闪烁表示1千瓦时,RUPIAH_PER_KWH = 1444.70表示R-1型/TR 1.301-2.200 VA为1444.70卢比

IMPULSE_KWH = 1000 
RUPIAH_PER_KWH = 1444.70

这一天的值和昨天的值,格式为年-月-日

now_date = datetime.now().strftime('%Y-%m-%d')
yesterday_date = datetime.now() - timedelta(days=1)
yesterday_date = yesterday_date.strftime('%Y-%m-%d')

连接PostgreSQL数据库

conn = create_engine("postgresql+psycopg2://root:12345678@localhost:5432/plnstats").connect()

我想总结一下昨天kWh的使用情况

df = pd.read_sql(sql='SELECT color_percentage, created_on from public.home_pln_kwh_sensor where created_on >= \'{yesterday} 00:00:00\' and created_on < \'{currdate} 00:00:00\''.format(yesterday=yesterday_date,currdate=now_date),con=conn)

将created_on列转换为pandas datetime

df['created_on'] = pd.to_datetime(df.created_on)
df['created_on'] = df['created_on'].dt.strftime('%Y-%m-%d %H:%M:%S')

规格化数据,其中一秒只有一个LED闪烁

df = df.drop_duplicates(subset=['created_on'])

每小时写一栏,以获取更多说明

df['created_on'] = pd.to_datetime(df.created_on)
df['hour'] = df['created_on'].dt.strftime('%H')
df['day'] =  df['created_on'].dt.strftime('%Y-%m-%d')

创建一天的清单以检查每天的信用卡使用情况

list_day = list(df['day'].unique())

创建一个新的数据帧进行总结

df_summary = pd.DataFrame(columns=['day','hour','sum_impulse','charges_amount'])

计算

for dday in list_day:
list_hour = list(df[df['day'] == str(dday)]['hour'].unique())
for y in list_hour:
wSumKWH = df[(df['day'] == str(dday)) & (df['hour'] == str(y))]
df_summary = df_summary.append({'hour':y,'day':dday,'sum_impulse':wSumKWH.groupby('hour').count()['day'][0],'charges_amount':(wSumKWH.groupby('hour').count()['day'][0])*RUPIAH_PER_KWH/IMPULSE_KWH},ignore_index=True)
df_summary.to_sql('home_pln_kwh_hour', schema='public', con=conn, if_exists='append', index=False)
credit_summary = df_summary[df_summary['day'] == yesterday_date].groupby('day').sum()
credit_summary.to_sql('home_pln_kwh_summary', schema='public', con=conn, if_exists='append', index=True)

你可以在数据库中查询摘要,也可以像这样从数据帧中提取摘要

图1为传感器每小时的分组,图2为千瓦时*千瓦时价格计算后的总结

然后,你可以看到每小时的最高价格。

这是kwh_pln_calculate.py的完整代码

import pandas as pd
from datetime import datetime,timedelta
from sqlalchemy import create_engineIMPULSE_KWH = 1000 #depends on prepaid meter
RUPIAH_PER_KWH = 1444.70  # R-1/TR 1.301 – 2.200 VAdef run_cron():now_date = datetime.now().strftime('%Y-%m-%d')yesterday_date = datetime.now() - timedelta(days=1)yesterday_date = yesterday_date.strftime('%Y-%m-%d')conn = create_engine("postgresql+psycopg2://root:12345678@localhost:5432/plnstats").connect()df = pd.read_sql(sql='SELECT color_percentage, created_on from public.home_pln_kwh_sensor where created_on >= \'{yesterday} 00:00:00\' and created_on < \'{currdate} 00:00:00\''.format(yesterday=yesterday_date,currdate=now_date),con=conn)df['created_on'] = pd.to_datetime(df.created_on)df['created_on'] = df['created_on'].dt.strftime('%Y-%m-%d %H:%M:%S')df = df.drop_duplicates(subset=['created_on'])df['created_on'] = pd.to_datetime(df.created_on)df['hour'] = df['created_on'].dt.strftime('%H')df['day'] =  df['created_on'].dt.strftime('%Y-%m-%d')list_day = list(df['day'].unique())df_summary = pd.DataFrame(columns=['day','hour','sum_impulse','charges_amount'])#DETAIL PER HOURfor dday in list_day:list_hour = list(df[df['day'] == str(dday)]['hour'].unique())for y in list_hour:wSumKWH = df[(df['day'] == str(dday)) & (df['hour'] == str(y))]df_summary = df_summary.append({'hour':y,'day':dday,'sum_impulse':wSumKWH.groupby('hour').count()['day'][0],'charges_amount':(wSumKWH.groupby('hour').count()['day'][0])*RUPIAH_PER_KWH/IMPULSE_KWH},ignore_index=True)df_summary.to_sql('home_pln_kwh_hour', schema='public', con=conn, if_exists='append', index=False)credit_summary = df_summary[df_summary['day'] == yesterday_date].groupby('day').sum()credit_summary.to_sql('home_pln_kwh_summary', schema='public', con=conn, if_exists='append', index=True)if __name__ == '__main__':run_cron()

谢谢你的阅读,希望你可以用它来衡量每个月的用电量

☆ END ☆

如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 mthler」,每日朋友圈更新一篇高质量博文。

扫描二维码添加小编↓

这篇关于使用Python+OpenCV统计每日用电量(附代码演练)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/267636

相关文章

Spring LDAP目录服务的使用示例

《SpringLDAP目录服务的使用示例》本文主要介绍了SpringLDAP目录服务的使用示例... 目录引言一、Spring LDAP基础二、LdapTemplate详解三、LDAP对象映射四、基本LDAP操作4.1 查询操作4.2 添加操作4.3 修改操作4.4 删除操作五、认证与授权六、高级特性与最佳

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要

Java中使用Hutool进行AES加密解密的方法举例

《Java中使用Hutool进行AES加密解密的方法举例》AES是一种对称加密,所谓对称加密就是加密与解密使用的秘钥是一个,下面:本文主要介绍Java中使用Hutool进行AES加密解密的相关资料... 目录前言一、Hutool简介与引入1.1 Hutool简介1.2 引入Hutool二、AES加密解密基础

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到