JVM 堆外内存查看方法

2023-10-23 07:01

本文主要是介绍JVM 堆外内存查看方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JVM 堆外内存查看方法

概述

  • 是否曾经想过为什么Java应用程序通过众所周知的*-Xms-Xmx调整标志消耗的内存比指定的数量大得多 ?由于各种原因和可能的优化,JVM可能会分配额外的本机内存。这些额外的分配最终可能使消耗的内存超出-Xmx* 限制。
  • 在本教程中,我们将枚举JVM中本机内存分配的一些常见来源,以及它们的大小调整标志,然后学习如何使用本机内存跟踪来监视它们。

本机分配

  • 通常,堆是Java应用程序中最大的内存消耗者,但是还有其他一些。**除了堆之外,JVM从本地内存中分配了相当大的块来维护其类元数据,应用程序代码,由JIT生成的代码,内部数据结构等。**在以下各节中,我们将探讨其中的一些分配。

  • 在这里插入图片描述

  • 可以看到整个memory主要包含了Java Heap、Class、Thread、Code、GC、Compiler、Internal、Other、Symbol、Native Memory Tracking、Arena Chunk这几部分;其中reserved表示应用可用的内存大小,committed表示应用正在使用的内存大小

  • Java Heap部分表示heap内存目前占用了463MB;

  • Class部分表示已经加载的classes个数为8801,其metadata占用了50MB;

  • Thread部分表示目前有225个线程,占用了27MB;

  • Code部分表示JIT生成的或者缓存的instructions占用了17MB;

  • GC部分表示目前已经占用了15MB的内存空间用于帮助GC;

  • Compiler部分表示compiler生成code的时候占用了26MB;

  • Internal部分表示命令行解析、JVMTI等占用了5MB;

  • Other部分表示尚未归类的占用了2MB;

  • Symbol部分表示诸如string table及constant pool等symbol占用了10MB;

  • Native Memory Tracking部分表示该功能自身占用了5MB;

  • Arena Chunk部分表示arena chunk占用了63MB

  • 一个arena表示使用malloc分配的一个memory chunk,这些chunks可以被其他subsystems做为临时内存使用,比如pre-thread的内存分配,它的内存释放是成bulk的

元空间 Class

  • 为了维护有关已加载类的某些元数据,JVM使用了称为*Metaspace*的专用非堆区域。在Java 8之前,等效项称为PermGenPermanent Generation。Metaspace或PermGen包含有关已加载类的元数据,而不是包含在堆中的有关它们的实例的元数据。
  • 这里重要的是,由于元空间是堆外数据区域,因此堆大小调整配置不会影响元空间的大小。为了限制元空间的大小,我们使用其他调整标志:
  • -XX:MetaspaceSize-XX:MaxMetaspaceSize设置最小和最大元空间大小
  • 在Java 8之前,使用*-XX:PermSize-XX:MaxPermSize*来设置最小和最大PermGen大小

线程数 Thread

  • JVM中最消耗内存的数据区域之一是堆栈,它与每个线程同时创建。堆栈存储局部变量和部分结果,在方法调用中起着重要作用。
  • 默认的线程堆栈大小取决于平台,但是在大多数现代的64位操作系统中,大约为1 MB。此大小可通过*-Xss *调整标志进行配置。
  • 与其他数据区域相比,当对线程数没有限制时,分配给堆栈的总内存实际上是不受限制的。 还值得一提的是,JVM本身需要一些线程来执行其内部操作,例如GC或即时编译。

代码缓存 Code

  • 为了在不同平台上运行JVM字节码,需要将其转换为机器指令。在执行程序时,JIT编译器负责此编译。
  • JVM将字节码编译为汇编指令时,会将这些指令存储在称为*代码缓存***的特殊非堆数据区域中 。 可以像JVM中的其他数据区域一样管理代码缓存。-XX:InitialCodeCacheSize **和 **-XX:ReservedCodeCacheSize **调谐标志确定用于代码高速缓存中的初始和最大可能大小。

垃圾收集 GC

  • JVM附带了几种GC算法,每种算法都适合不同的用例。所有这些GC算法都有一个共同的特征:它们需要使用一些堆外数据结构来执行任务。这些内部数据结构消耗更多的本机内存。

Symbols

  • 让我们从字符串开始 , 它是应用程序和库代码中最常用的数据类型之一。由于它们无处不在,因此它们通常占据堆的很大一部分。如果大量的这些字符串包含相同的内容,那么堆的很大一部分将被浪费。
  • 为了节省一些堆空间,我们可以存储每个String的一个版本, 并让其他版本引用存储的版本。 此过程称为字符串实习。由于JVM只能内生 编译时间字符串常量,因此 我们可以对要内生的字符串手动调用intern() 方法。
  • JVM将内联的字符串存储在特殊的本机固定大小的哈希表中,该哈希表称为String Table,也称为String Pool。我们可以通过**-XX:StringTableSize** 调整标志来配置表的大小(即桶数) 。
  • 除了字符串表外,还有另一个本机数据区域,称为运行时常量池。 JVM使用此池存储必须在运行时解析的常量,例如编译时数字文字,方法和字段引用。

本机字节缓冲区 Native Byte Buffers

  • JVM通常是大量本机分配的可疑对象,但有时开发人员也可以直接分配本机内存。最常见的方法是通过JNI和NIO的直接ByteBuffers进行**malloc **调用

Additional Tuning Flags

  • 在本节中,我们针对不同的优化方案使用了少数JVM调整标志。使用以下技巧,我们几乎可以找到与特定概念相关的所有调整标志:

  • $ java -XX:+PrintFlagsFinal -version | grep <concept>
    
  • PrintFlagsFinal打印所有- *XX *在JVM选项。例如,要查找所有与Metaspace相关的标志:

  • $ java -XX:+PrintFlagsFinal -version | grep Metaspace      // truncated      uintx MaxMetaspaceSize                          = 18446744073709547520                    {product}      uintx MetaspaceSize                             = 21807104                                {pd product}      // truncated
    

本机内存跟踪(NMT)

  • 既然我们知道了JVM中本机内存分配的常见来源,那么该是时候找出如何监视它们了。**首先,我们应该使用另一个JVM调整标志启用本地内存跟踪:*-XX:NativeMemoryTracking = off | sumary | detail。 ***默认情况下,NMT处于关闭状态,但我们可以使它查看其观测结果的摘要或详细视图。

  • 假设我们要跟踪典型的Spring Boot应用程序的本机分配:

  • $ java -XX:NativeMemoryTracking=summary -Xms300m -Xmx300m -XX:+UseG1GC -jar app.jar
    
  • 在这里,我们使用G1作为GC算法,在分配300 MB堆空间的同时启用NMT。

即时快照

  • 启用NMT后,我们可以随时使用*jcmd *命令获取本机内存信息 :

  • $ jcmd <pid> VM.native_memory
    
  • 为了找到JVM应用程序的PID,我们可以使用 jps命令:

  • $ jps -l                    7858 app.jar // This is our app7899 sun.tools.jps.Jps
    
  • 现在,如果我们将 jcmd *与适当的*pid一起使用, *VM.native_memory *将使JVM打印出有关本机分配的信息:

  • $ jcmd 7858 VM.native_memory
    
  • 让我们逐节分析NMT输出。

总分配

  • NMT报告保留和提交的内存总量,如下所示:

  • Native Memory Tracking:Total: reserved=1731124KB, committed=448152KB
    
  • 保留的内存代表我们的应用程序可能使用的内存总量。相反,已提交的内存等于我们的应用程序当前正在使用的内存量。

  • 尽管分配了300 MB的堆,但我们的应用程序的总保留内存几乎为1.7 GB,远不止于此。同样,已提交的内存大约为440 MB,这又远远超过了300 MB。

  • 在合计部分之后,NMT报告每个分配源的内存分配。因此,让我们深入探讨每个来源。

  • NMT按预期报告了我们的堆分配:

  • Java Heap (reserved=307200KB, committed=307200KB)          (mmap: reserved=307200KB, committed=307200KB)
    
  • 300 MB的保留和提交内存,与我们的堆大小设置匹配。

元空间

  • NMT关于已加载类的类元数据的说明如下:

  • Class (reserved=1091407KB, committed=45815KB)      (classes #6566)      (malloc=10063KB #8519)       (mmap: reserved=1081344KB, committed=35752KB)
    
  • 保留了将近1 GB的空间,并有45 MB的空间用于加载6566类。

线程

  • 这是关于线程分配的NMT报告:

  • Thread (reserved=37018KB, committed=37018KB)       (thread #37)       (stack: reserved=36864KB, committed=36864KB)       (malloc=112KB #190)        (arena=42KB #72)
    
  • 总共为37个线程的堆栈分配了36 MB的内存–每个堆栈几乎1 MB。JVM在创建时将内存分配给线程,因此保留和提交的分配是相等的。

代码缓存

  • 让我们看看NMT对JIT生成和缓存的汇编指令的评价:

  • Code (reserved=251549KB, committed=14169KB)     (malloc=1949KB #3424)      (mmap: reserved=249600KB, committed=12220KB)
    
  • 当前,将近有13 MB的代码被缓存,并且该数量可能会增加到大约245 MB。

GC

  • 这是有关G1 GC内存使用情况的NMT报告:

  • GC (reserved=61771KB, committed=61771KB)   (malloc=17603KB #4501)    (mmap: reserved=44168KB, committed=44168KB)
    
  • 我们可以看到,几乎有60 MB的空间被保留并致力于帮助G1。

  • 让我们看看一个简单得多的GC(例如串行GC)的内存使用情况:

  • $ java -XX:NativeMemoryTracking=summary -Xms300m -Xmx300m -XX:+UseSerialGC -jar app.jar
    
  • 串行GC几乎不使用1 MB:

  • GC (reserved=1034KB, committed=1034KB)   (malloc=26KB #158)    (mmap: reserved=1008KB, committed=1008KB)
    
  • 显然,我们不应该仅仅因为内存使用率就选择了GC算法,因为串行GC的“停滞不前”性质可能会导致性能下降。

符号Symbol

  • 这是有关符号分配的NMT报告,例如字符串表和常量池:

  • Symbol (reserved=10148KB, committed=10148KB)       (malloc=7295KB #66194)        (arena=2853KB #1)
    
  • 将近10 MB分配给符号。

随着时间的NMT

  • NMT使我们能够跟踪内存分配如何随时间变化。**首先,我们应将应用程序的当前状态标记为基线:

  • $ jcmd <pid> VM.native_memory baseline
    
  • 然后,过一会儿,我们可以将当前内存使用量与该基准进行比较:

  • $ jcmd <pid> VM.native_memory summary.diff
    
  • NMT使用+和–符号将告诉我们在此期间内存使用量如何变化:

  • Total: reserved=1771487KB +3373KB, committed=491491KB +6873KB-             Java Heap (reserved=307200KB, committed=307200KB)                        (mmap: reserved=307200KB, committed=307200KB) -             Class (reserved=1084300KB +2103KB, committed=39356KB +2871KB)// Truncated
    
  • 保留和提交的总内存分别增加了3 MB和6 MB。可以很容易地发现内存分配中的其他波动。

详细的NMT

  • NMT可以提供有关整个内存空间映射的非常详细的信息。要启用此详细报告,我们应该使用*-XX:NativeMemoryTracking = detail *调整标志。

-----------------------------------------------------------------------------------

offer突击训练营简介:

1:针对不知道怎么面试,面试没有信心的小伙伴,我们会给你一个offer保障。

2:我们会监督你15-20天内把面试体系技术点掌握至少7成,这样足够你去找到满意的工作了。

3:我们是面向面试学习指导,不会带你们去写代码,会把项目真实开发的迭代过程和技术细节如何实现业务功能都详细教清楚,你能在面试中流畅表达清楚就行了,项目经验你不用担心(技术老师提供的真实项目经验肯定拿的出手),自己学和别人带着系统学,效率完全不一样。

详情请点击这里:offer突击训练营,给你一个offer的保障,求职跳槽的看过来!

这篇关于JVM 堆外内存查看方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/266336

相关文章

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@