再学贝叶斯网络--TAN树型朴素贝叶斯算法

2023-10-22 12:11

本文主要是介绍再学贝叶斯网络--TAN树型朴素贝叶斯算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在前面的时间里已经学习过了NB朴素贝叶斯算法, 又刚刚初步的学习了贝叶斯网络的一些基本概念和常用的计算方法。于是就有了上篇初识贝叶斯网络的文章,由于本人最近一直在研究学习<<贝叶斯网引论>>,也接触到了许多与贝叶斯网络相关的知识,可以说朴素贝叶斯算法这些只是我们所了解贝叶斯知识的很小的一部分。今天我要总结的学习成果就是基于NB算法的,叫做Tree Augmented Naive Bays,中文意思就是树型朴素贝叶斯算法,简单理解就是树增强型NB算法,那么问题来了,他是如何增强的呢,请继续往下正文的描述。

朴素贝叶斯算法

又得要从朴素贝叶斯算法开始讲起了,因为在前言中已经说了,TAN算法是对NB算法的增强,了解过NB算法的,一定知道NB算法在使用的时候是假设属性事件是相互独立的,而决策属性的分类结果是依赖于各个条件属性的情况的,最后选择分类属性中拥有最大后验概率的值为决策属性。比如下面这个模型可以描述一个简单的模型,


上面账号是否真实的依赖属性条件有3个,好友密度,是否使用真实头像,日志密度,假设这3个属性是相互独立的,但是事实上,在这里的头像是否真实和好友密度其实是有关联的,所以更加真实的情况是下面这张情况;


OK,TAN的出现就解决了条件间的部分属性依赖的问题。在上面的例子中我们是根据自己的主观意识判断出头像和好友密度的关系,但是在真实算法中,我们当然希望机器能够自己根据所给数据集帮我们得出这样的关系,令人高兴的事,TAN帮我们做到了这点。

TAN算法

互信息值

互信息值,在百度百科中的解释如下:

互信息值是信息论中一个有用的信息度量。它可以看出是一个信息量里包含另一个随机变量的信息量。

用图线来表示就是下面这样。


中间的I(x;y)就是互信息值,X,Y代表的2种属性。于是下面这个属性就很好理解了,互信息值越大,就代表2个属性关联性越大。互信息值的标准公式如下:


但是在TAN中会有少许的不一样,会有类变量属性的加入,因为属性之间的关联性的前提是要在某一分类属性确定下进行重新计算,不同的类属性值会有不同的属性关联性。下面是TAN中的I(x;Y)计算公式:


现在看不懂不要紧,后面在给出的程序代码中可自行调试。

算法实现过程

TAN的算法过程其实并不简单,在计算完各个属性对的互信息值之后,要进行贝叶斯网络的构建,这个是TAN中最难的部分,这个部分有下面几个阶段。

1、根据各个属性对的互信息值降序排序,依次取出其中的节点对,遵循不产生环路的原则,构造最大权重跨度树,直到选择完n-1条边为止(因为总共n个属性节点,n-1条边即可确定)。按照互信息值从高到低选择的原因就是要保留关联性更高的关联依赖性的边。

2、上述过程构成的是一个无向图,接下来为整个无向图确定边的方向。选择任意一个属性节点作为根节点,由根节点向外的方向为属性节点之间的方向。

3、为每一个属性节点添加父节点,父节点就是分类属性节点,至此贝叶斯网络结构构造完毕。

为了方便大家理解,我在网上截了几张图,下面这张是在5个属性节点中优先选择了互信息值最大的4条作为无向图:


上述带了箭头是因为,我选择的A作为树的根节点,然后方向就全部确定了,因为A直接连着4个属性节点,然后再此基础上添加父节点,就是下面这个样子了。


OK,这样应该就比较好理解了吧

这篇关于再学贝叶斯网络--TAN树型朴素贝叶斯算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/261374

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n