造车先做三蹦子220101--机器学习字符(字母、和数字识别)的“小白鼠”与“果蝇”

本文主要是介绍造车先做三蹦子220101--机器学习字符(字母、和数字识别)的“小白鼠”与“果蝇”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“0”数字字符零 的图片(16*16点阵):


import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image, ImageDraw, ImageFont
from torchvision import transforms
import matplotlib.pyplot as pltTimes2000=1000# 参数设置
font_path = "arial.ttf"    #e:\\arial.ttf"
#siz28e28 = 28
siz28e28=28
characters = ["2","4"] +[str(i) for i in range(8,9)] + ["A","Z"]   #["A", "B"]
print(characters)# 1. 生成字符和数字的点阵数据
def render_char(char, siz28e28):image = Image.new("L", (siz28e28, siz28e28), "white")draw = ImageDraw.Draw(image)font = ImageFont.truetype(font_path, siz28e28)
#----------------------------------------------------------
#    w, h = draw.textsize(char, font=font)# 使用textbox方法来获取文本的边界框
#    left, upper, right, lower = draw.textbbox((0, 0), char, font=font)
#    w01, h01 = right - left, lower - upper
#    print("[right",right," _left",left, " _lower",lower, " _upper",upper ,")")
#    print("(w1",w01, "h1",h01 ,"] ")
#    w02, h02 = draw.textsize(char, font=font)    #//draw.textsize()函数新版本DeprecationWarning: textsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use textbbox or textlength instead.
#    print("{[w2",w02, "h2",w02 ,"]} ")w03 = draw.textlength(char, font=font)h03 = siz28e28print("{[w3",w03, "h3",w03 ,"]} ")
#=============================================draw.text(((siz28e28-w03)/2, (siz28e28-h03)/2), char, font=font, fill="black")return imagedata = []
labels = []
for i, char in enumerate(characters):img = render_char(char, siz28e28)data.append(transforms.ToTensor()(img))labels.append(i)# 2. 训练神经网络模型
class SimpleNet(nn.Module):def __init__(self, num_classes):super(SimpleNet, self).__init__()self.fc = nn.Linear(siz28e28 * siz28e28, num_classes)def forward(self, x):x = x.view(-1, siz28e28 * siz28e28)x = self.fc(x)return xmodel = SimpleNet(len(characters))
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)for epoch in range(Times2000):#8000):#1000):inputs = torch.stack(data)targets = torch.tensor(labels)optimizer.zero_grad()outputs = model(inputs)loss = loss_function(outputs, targets)loss.backward()optimizer.step()# 3. 使用模型进行预测
def predict_image(img_path):model.eval()img = Image.open(img_path).convert("L").resize((siz28e28, siz28e28))img_tensor = transforms.ToTensor()(img).unsqueeze(0)output = model(img_tensor)_, predicted = output.max(1)return characters[predicted[0]]# 预测E盘的图像
#img_path = "E:\\i.png"
#img_path = "E:\\256A256.png"
#img_path = "E:\\A128_128.png"
#img_path="e:\\a16_16.png"
#img_path="e:\\9_16_16.png"
#im="e:\\0_16_16.png"#//1-----
im="f:\\22letter23r1001\8_16_16.png"
predicted_char = predict_image(im)
print(f"预测的字符为: {predicted_char}")# 使用matplotlib显示结果
plt.imshow(Image.open(im))
plt.title(f"Predicted: {predicted_char}")
plt.axis("off")
plt.show()#//2-----------------------------------------im="f:\\22letter23r1001\A16_16.png"
predicted_char = predict_image(im)
print(f"预测的字符为: {predicted_char}")# 使用matplotlib显示结果
plt.imshow(Image.open(im))
plt.title(f"Predicted: {predicted_char}")
#plt.axis("off")
plt.show()#//3-----------------------------------------im="f:\\22letter23r1001\\01616.png"   #f:\\22letter23r1001\x0e16.png'
predicted_char = predict_image(im)
print(f"预测的字符为: {predicted_char}")# 使用matplotlib显示结果
plt.imshow(Image.open(im))
plt.title(f"Predicted: {predicted_char}")
plt.show()#//4-----------------------------------------im="f:\\22letter23r1001\8_17x20.png"
predicted_char = predict_image(im)
print(f"预测的字符为: {predicted_char}")# 使用matplotlib显示结果
plt.imshow(Image.open(im))
plt.title(f"Predicted: {predicted_char}")plt.show()#//5-----------------------------------------im="f:\\22letter23r1001\8_15x19.png"
predicted_char = predict_image(im)
print(f"预测的字符为: {predicted_char}")# 使用matplotlib显示结果
plt.imshow(Image.open(im))
plt.title(f"Predicted: {predicted_char}")
plt.show()#//6-----------------------------------------im="f:\\22letter23r1001\8_25x31.png"
predicted_char = predict_image(im)
print(f"预测的字符为: {predicted_char}")# 使用matplotlib显示结果
plt.imshow(Image.open(im))
plt.title(f"Predicted: {predicted_char}")
plt.show()#//6-----------------------------------------im="f:\\22letter23r1001\01616.png"

造车先做三蹦子的原理是:

torch,tensorflew,pytorch这个相当于马达、发动机、变速器等底层原件……

一、造车要不要先研究马达、轮子、发动机?
当然!必须!

二、

研究完 元器件 马达、轮子、发动机  就该造……
就可以 造 宝马?奔驰?Prius、本田、混动了吗?

没那么简单……

对于初级架构师傅来讲……

学习 Prius的新型架构当然有用!

但是,能完整的 架构出来一辆 五菱宏光、架构出一辆老头乐,架构出一辆三蹦子……那才是一位合格的架构师

如果一个伪装的架构师问你:

我需要 三年时间、三个亿$金钱 架构出一辆 特斯了、Prius混动汽车…… 给钱吧!?

你应该这样回复他:

那我只给你三个月时间,只给你10万~100万人民币…… 请你先给俺架构出一辆 老头乐的或五菱宏光!!

做好了,

咱们开展下个任务!!

做不好,那您不叫架构师……  骗子 称号更适合您!

同样道理,一个合格的 外科医生,

在给 患者病人 做手术以前,当然应该是先 解剖 过 小白鼠、和青蛙;

我读过 Caffe的完整代码,这相当于解剖尸体;

重新遭过轮子。

这次,就手工 撸 一个 文字(字符)识别 的框架 出来…… 作为 机器学习的“三蹦子”、小白鼠、或者“果蝇”

下面Demo就是 字符(数字、字母)识别的基本框架……

先用 torch完成……

import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image, ImageDraw, ImageFont
from torchvision import transforms
import matplotlib.pyplot as plt# 参数设置
font_path = "e:\\arial.ttf"
siz28e28 = 28
characters = [str(i) for i in range(0, 10)] + ["A", "B"]# 1. 生成字符和数字的点阵数据
def render_char(char, siz28e28):image = Image.new("L", (siz28e28, siz28e28), "white")draw = ImageDraw.Draw(image)font = ImageFont.truetype(font_path, siz28e28)
#----------------------------------------------------------
#    w, h = draw.textsize(char, font=font)# 使用textbox方法来获取文本的边界框
#    left, upper, right, lower = draw.textbbox((0, 0), char, font=font)
#    w01, h01 = right - left, lower - upper
#    print("[right",right," _left",left, " _lower",lower, " _upper",upper ,")")
#    print("(w1",w01, "h1",h01 ,"] ")
#    w02, h02 = draw.textsize(char, font=font)    //draw.textsize()函数新版本DeprecationWarning: textsize is deprecated and will be removed in Pillow 10 (2023-07-01). Use textbbox or textlength instead.
#    print("{[w2",w02, "h2",w02 ,"]} ")w03 = draw.textlength(char, font=font)h03 = siz28e28print("{[w3",w03, "h3",w03 ,"]} ")
#=============================================draw.text(((siz28e28-w03)/2, (siz28e28-h03)/2), char, font=font, fill="black")return imagedata = []
labels = []
for i, char in enumerate(characters):img = render_char(char, siz28e28)data.append(transforms.ToTensor()(img))labels.append(i)# 2. 训练神经网络模型
class SimpleNet(nn.Module):def __init__(self, num_classes):super(SimpleNet, self).__init__()self.fc = nn.Linear(siz28e28 * siz28e28, num_classes)def forward(self, x):x = x.view(-1, siz28e28 * siz28e28)x = self.fc(x)return xmodel = SimpleNet(len(characters))
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)for epoch in range(1000):inputs = torch.stack(data)targets = torch.tensor(labels)optimizer.zero_grad()outputs = model(inputs)loss = loss_function(outputs, targets)loss.backward()optimizer.step()# 3. 使用模型进行预测
def predict_image(img_path):model.eval()img = Image.open(img_path).convert("L").resize((siz28e28, siz28e28))img_tensor = transforms.ToTensor()(img).unsqueeze(0)output = model(img_tensor)_, predicted = output.max(1)return characters[predicted[0]]# 预测E盘的图像
#img_path = "E:\\i.png"
img_path = "E:\\256A256.png"
predicted_char = predict_image(img_path)
print(f"预测的字符为: {predicted_char}")# 使用matplotlib显示结果
plt.imshow(Image.open(img_path))
plt.title(f"Predicted: {predicted_char}")
plt.axis("off")
plt.show()

这篇关于造车先做三蹦子220101--机器学习字符(字母、和数字识别)的“小白鼠”与“果蝇”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260767

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

usaco 1.2 Name That Number(数字字母转化)

巧妙的利用code[b[0]-'A'] 将字符ABC...Z转换为数字 需要注意的是重新开一个数组 c [ ] 存储字符串 应人为的在末尾附上 ‘ \ 0 ’ 详见代码: /*ID: who jayLANG: C++TASK: namenum*/#include<stdio.h>#include<string.h>int main(){FILE *fin = fopen (

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学