数据结构 图论09 关键路径(AOE)网 通俗易懂

2023-10-22 09:50

本文主要是介绍数据结构 图论09 关键路径(AOE)网 通俗易懂,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关键路径

关键路径是求「工程上时间最短的问题」的方法

阅读本文前请先了解

拓扑排序

拓扑排序主要解决「工程是否能顺序进行」的问题,关键路径在拓扑排序的基础上解决「工程最短时间的问题」。

一、工程最短时间

image-20201231135025743

工程时间最短的问题:

按照工厂上图生产一辆汽车,外壳、发动机、轮子和其他部件可以同时建造。

(1)求组装完成最短需要多少时间?

(2)如何缩短最短时间?

答案:

(1)

因为所有部件可以同时建造,所以只要最长时间的「发动机」不建造完毕集中部件就无法进行。所以:「工程最短时间」就是通向汇点的和 最长的权重。(最长权重的路径也叫做「关键路径」)

上图 开始 -> 发动机完成 -> 部件集中完成 -> 组装完成 就是最长权重,组装完成最短用时 6

(2)

关键路径性质:缩短关键路径上的时间就能缩短最短时间(但是缩短的同时关键路径会动态发生变化,比如发动机建造时间 <= 2 ,继续缩短发动机建造时间就没用了)

二、AOE (Activity On Edge)网络

找出最长权重的路径就是关键路径。所以边必须有权重。(没权重咋算??)

我们要在「拓扑排序」AOV 网的基础上介绍 AOE 网,区别如下

  • AOV(Activity On Vertex):活动在顶点上,边没有权重
  • AOE(Activity On Edge):活动在边上,边有权重

定义如下:

  • 边(Edge)称之为「活动」(比如造轮子)

  • 顶点(Vertex)称之为「事件」(比如说轮子完成)

image-20201231135025743

三、关键路基算法

3.1 关键路径算法原理

我们如何求出关键路径?

我们举个例子:

小明有 2 个小时的作业,回家一共有 4 个小时做作业的时间。他可以选择一开始就做,或者因为「ddl 综合征」最后 2 小时才开始做。此时「做作业最早的时间」和「做作业的最晚时间」是不等的。

老师知道小明的情况后将小明的作业增加到了 4 个小时的量,小明做作业的时间还是 4 个小时。小明只能回家就开始做作业才能做完。此时「做作业最早的时间」和「做作业的最晚时间」是相等的。

「做作业最早的时间」和「做作业的最晚时间」是相等的说明:如果做作业的时间延误,将会导致整个工期延误,做作业的时间缩短,整个工期的最短时间就会缩短。

我们将「做作业」抽象为「活动」Activity,「作业完成」抽象为「事件」Event

关键路径定义:活动的最早发生时间和最晚发生时间相等的路径就是关键路径

求关键路径我们只需要求出「活动最早发生时间」和「活动最晚发生时间」即可。


3.2 关键路径算法

(1)参数定义

求关键路径我们只需要求出「活动最早发生时间」和「活动最晚发生时间」即可。

但是在 AOE 图中,「活动」就是向量边,求向量边一般是困难的,我们可以借助顶点来求边。

参数定义如下:

  • etv(Earliest Time of Vertex):顶点最早发生时间,也就是「事件最早发生时间」
  • ltv(Lastest Time of Vertex):顶点最晚发生时间,也就是「事件最晚发生时间」
  • ete(Earliest Time of Edge):边最早发生时间,也就是「活动最早发生时间」
  • lte(Lastest Time of Edge):边最晚发生时间,也就是「活动最晚发生时间」

我们通过 etv 求 ete,ltv 求 lte


(2)算法步骤

步骤如下:(结合代码理解)

  • 通过拓扑排序求出 etv「事件最早发生时间」

    e t v [ j ] = m a x { e t v ( i ) + w e i g h t < i , j > } etv[j] = max\{etv(i) + weight<i,j>\} etv[j]=max{etv(i)+weight<i,j>}

  • 通过「反向推导」求出 ltv「事件最晚发生时间」

    l t v [ i ] = m a x { e t v ( j ) − w e i g h t < i , j > } ltv[i] = max\{etv(j) - weight<i,j>\} ltv[i]=max{etv(j)weight<i,j>}

  • 通过 etv 求出 ete「活动最早发生时间」

    活动最早发生时间等于 f r o m from from(箭头开始方向的事件最早发动时间)

  • 通过 ltv 求出 lte「活动最晚发生时间」

    活动最晚发生时间等于 t o − w e i g h t to - weight toweight(箭头结束方向的事件发生时间 - 权重)

  • 通过 lte - ete 求出关键路径


四、代码

示例如下图:

image-20201231150824801

public class CriticalPath {/** 边 */static class Edge{/** 权重 */int weight;/** 出度指向的点 */int toVertex;Edge next;public Edge(int weight, int toVertex, Edge next) {this.weight = weight;this.toVertex = toVertex;this.next = next;}}/** 顶点 */static class Vertex{/** 入度 数量 */int inNumber;/** 顶点信息 */Integer data;/** 第一条边 */Edge firstEdge;public Vertex(int inNumber, Integer data, Edge firstEdge) {this.inNumber = inNumber;this.data = data;this.firstEdge = firstEdge;}}static void criticalPath(List<Vertex> graph){//顶点数量int length = graph.size();//边数量int numOfEdges = 0;for (Vertex vertex : graph) {Edge edge = vertex.firstEdge;while (edge!=null){numOfEdges ++;edge = edge.next;}}//事件最早发生时间int[] etv = new int[length];//事件最晚发生时间int[] ltv = new int[length];//活动最早发生时间int[] ete = new int[numOfEdges];//活动最晚发生时间int[] lte = new int[numOfEdges];//1. 通过拓扑排序求 etv 「事件最早发生时间」//etvStack 用于储存拓扑排序后的顺序Stack<Vertex> etvStack = new Stack<>();//stack 用于拓扑排序Stack<Vertex> stack = new Stack<>();for (Vertex vertex : graph) {if (vertex.inNumber == 0){stack.push(vertex);}}while (!stack.isEmpty()){Vertex pop = stack.pop();//储存拓扑排序后的结构etvStack.push(pop);//遍历出度Edge edge = pop.firstEdge;while (edge != null){Vertex vertex = graph.get(edge.toVertex);vertex.inNumber --;if (vertex.inNumber == 0){stack.push(vertex);}//赋值更大的距离给 etvif (etv[pop.data] + edge.weight > etv[edge.toVertex]){etv[edge.toVertex] = etv[pop.data] + edge.weight;}edge = edge.next;}}//2.通过 etv 反向推导求出 ltv「事件最晚发生时间」System.out.println("====etv====");for (int i = 0; i < etv.length; i++) {System.out.print("V"+i +" = "+etv[i]+" ");}System.out.println();//初始化 ltvInteger endVertex = etvStack.peek().data;for (int i = 0; i < ltv.length; i++) {ltv[i] = etv[endVertex];}while (!etvStack.isEmpty()) {Vertex pop = etvStack.pop();Edge edge = pop.firstEdge;while (edge != null) {//赋值更小的距离给 ltvif (ltv[pop.data] > ltv[edge.toVertex] - edge.weight) {ltv[pop.data] = ltv[edge.toVertex] - edge.weight;}edge = edge.next;}}System.out.println("====ltv====");for (int i = 0; i < ltv.length; i++) {System.out.print("V"+i +" = "+ltv[i]+" ");}System.out.println();//3. 通过 etv 求 eteint index = 0;for (Vertex vertex : graph) {Edge edge = vertex.firstEdge;while (edge != null){ete[index++] = etv[vertex.data];edge = edge.next;}}System.out.println("====ete====");for (int i = 0; i < ete.length; i++) {System.out.print("E"+i +" = "+ete[i]+" ");}System.out.println();//4. 通过 ltv 求 lteindex = 0;for (Vertex vertex : graph) {Edge edge = vertex.firstEdge;while (edge != null){lte[index++] = ltv[edge.toVertex] - edge.weight;edge = edge.next;}}System.out.println("====lte====");for (int i = 0; i < lte.length; i++) {System.out.print("E"+i +" = "+lte[i]+" ");}System.out.println();//5. 用 lte - ete 求关键路径 System.out.println("====关键路径====");for (int i = 0; i < ete.length; i++) {if (lte[i] - ete[i] == 0) {System.out.print("E"+i+" ");}}return ;}/** 测试 */public static void main(String[] args) {char[] vertices = new char[]{'A','B','C','D','E','F','G'};Edge e3 = new Edge(2, 4, null);Edge e2 = new Edge(1, 3, e3);Edge e1 = new Edge(3, 2, e2);Edge e0 = new Edge(2, 1, e1);Edge e4 = new Edge(1, 5, null);Edge e5 = new Edge(1, 5, null);Edge e6 = new Edge(1, 5, null);Edge e7 = new Edge(1, 5, null);Edge e8 = new Edge(2, 6, null);Vertex a = new Vertex(0, 0, e0);Vertex b = new Vertex(1, 1, e4);Vertex c = new Vertex(1, 2, e5);Vertex d = new Vertex(1, 3, e6);Vertex e = new Vertex(1, 4, e7);Vertex f = new Vertex(4, 5, e8);Vertex g = new Vertex(1, 6, null);ArrayList<Vertex> graph = new ArrayList<>();graph.add(a);graph.add(b);graph.add(c);graph.add(d);graph.add(e);graph.add(f);graph.add(g);criticalPath(graph);}
}

结果:

====etv====
V0 = 0 V1 = 2 V2 = 3 V3 = 1 V4 = 2 V5 = 4 V6 = 6 
====ltv====
V0 = 0 V1 = 3 V2 = 3 V3 = 3 V4 = 3 V5 = 4 V6 = 6 
====ete====
E0 = 0 E1 = 0 E2 = 0 E3 = 0 E4 = 2 E5 = 3 E6 = 1 E7 = 2 E8 = 4 
====lte====
E0 = 1 E1 = 0 E2 = 2 E3 = 1 E4 = 3 E5 = 3 E6 = 3 E7 = 3 E8 = 4 
====关键路径====
E1 E5 E8 

这篇关于数据结构 图论09 关键路径(AOE)网 通俗易懂的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260655

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要