数据结构 图论09 关键路径(AOE)网 通俗易懂

2023-10-22 09:50

本文主要是介绍数据结构 图论09 关键路径(AOE)网 通俗易懂,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关键路径

关键路径是求「工程上时间最短的问题」的方法

阅读本文前请先了解

拓扑排序

拓扑排序主要解决「工程是否能顺序进行」的问题,关键路径在拓扑排序的基础上解决「工程最短时间的问题」。

一、工程最短时间

image-20201231135025743

工程时间最短的问题:

按照工厂上图生产一辆汽车,外壳、发动机、轮子和其他部件可以同时建造。

(1)求组装完成最短需要多少时间?

(2)如何缩短最短时间?

答案:

(1)

因为所有部件可以同时建造,所以只要最长时间的「发动机」不建造完毕集中部件就无法进行。所以:「工程最短时间」就是通向汇点的和 最长的权重。(最长权重的路径也叫做「关键路径」)

上图 开始 -> 发动机完成 -> 部件集中完成 -> 组装完成 就是最长权重,组装完成最短用时 6

(2)

关键路径性质:缩短关键路径上的时间就能缩短最短时间(但是缩短的同时关键路径会动态发生变化,比如发动机建造时间 <= 2 ,继续缩短发动机建造时间就没用了)

二、AOE (Activity On Edge)网络

找出最长权重的路径就是关键路径。所以边必须有权重。(没权重咋算??)

我们要在「拓扑排序」AOV 网的基础上介绍 AOE 网,区别如下

  • AOV(Activity On Vertex):活动在顶点上,边没有权重
  • AOE(Activity On Edge):活动在边上,边有权重

定义如下:

  • 边(Edge)称之为「活动」(比如造轮子)

  • 顶点(Vertex)称之为「事件」(比如说轮子完成)

image-20201231135025743

三、关键路基算法

3.1 关键路径算法原理

我们如何求出关键路径?

我们举个例子:

小明有 2 个小时的作业,回家一共有 4 个小时做作业的时间。他可以选择一开始就做,或者因为「ddl 综合征」最后 2 小时才开始做。此时「做作业最早的时间」和「做作业的最晚时间」是不等的。

老师知道小明的情况后将小明的作业增加到了 4 个小时的量,小明做作业的时间还是 4 个小时。小明只能回家就开始做作业才能做完。此时「做作业最早的时间」和「做作业的最晚时间」是相等的。

「做作业最早的时间」和「做作业的最晚时间」是相等的说明:如果做作业的时间延误,将会导致整个工期延误,做作业的时间缩短,整个工期的最短时间就会缩短。

我们将「做作业」抽象为「活动」Activity,「作业完成」抽象为「事件」Event

关键路径定义:活动的最早发生时间和最晚发生时间相等的路径就是关键路径

求关键路径我们只需要求出「活动最早发生时间」和「活动最晚发生时间」即可。


3.2 关键路径算法

(1)参数定义

求关键路径我们只需要求出「活动最早发生时间」和「活动最晚发生时间」即可。

但是在 AOE 图中,「活动」就是向量边,求向量边一般是困难的,我们可以借助顶点来求边。

参数定义如下:

  • etv(Earliest Time of Vertex):顶点最早发生时间,也就是「事件最早发生时间」
  • ltv(Lastest Time of Vertex):顶点最晚发生时间,也就是「事件最晚发生时间」
  • ete(Earliest Time of Edge):边最早发生时间,也就是「活动最早发生时间」
  • lte(Lastest Time of Edge):边最晚发生时间,也就是「活动最晚发生时间」

我们通过 etv 求 ete,ltv 求 lte


(2)算法步骤

步骤如下:(结合代码理解)

  • 通过拓扑排序求出 etv「事件最早发生时间」

    e t v [ j ] = m a x { e t v ( i ) + w e i g h t < i , j > } etv[j] = max\{etv(i) + weight<i,j>\} etv[j]=max{etv(i)+weight<i,j>}

  • 通过「反向推导」求出 ltv「事件最晚发生时间」

    l t v [ i ] = m a x { e t v ( j ) − w e i g h t < i , j > } ltv[i] = max\{etv(j) - weight<i,j>\} ltv[i]=max{etv(j)weight<i,j>}

  • 通过 etv 求出 ete「活动最早发生时间」

    活动最早发生时间等于 f r o m from from(箭头开始方向的事件最早发动时间)

  • 通过 ltv 求出 lte「活动最晚发生时间」

    活动最晚发生时间等于 t o − w e i g h t to - weight toweight(箭头结束方向的事件发生时间 - 权重)

  • 通过 lte - ete 求出关键路径


四、代码

示例如下图:

image-20201231150824801

public class CriticalPath {/** 边 */static class Edge{/** 权重 */int weight;/** 出度指向的点 */int toVertex;Edge next;public Edge(int weight, int toVertex, Edge next) {this.weight = weight;this.toVertex = toVertex;this.next = next;}}/** 顶点 */static class Vertex{/** 入度 数量 */int inNumber;/** 顶点信息 */Integer data;/** 第一条边 */Edge firstEdge;public Vertex(int inNumber, Integer data, Edge firstEdge) {this.inNumber = inNumber;this.data = data;this.firstEdge = firstEdge;}}static void criticalPath(List<Vertex> graph){//顶点数量int length = graph.size();//边数量int numOfEdges = 0;for (Vertex vertex : graph) {Edge edge = vertex.firstEdge;while (edge!=null){numOfEdges ++;edge = edge.next;}}//事件最早发生时间int[] etv = new int[length];//事件最晚发生时间int[] ltv = new int[length];//活动最早发生时间int[] ete = new int[numOfEdges];//活动最晚发生时间int[] lte = new int[numOfEdges];//1. 通过拓扑排序求 etv 「事件最早发生时间」//etvStack 用于储存拓扑排序后的顺序Stack<Vertex> etvStack = new Stack<>();//stack 用于拓扑排序Stack<Vertex> stack = new Stack<>();for (Vertex vertex : graph) {if (vertex.inNumber == 0){stack.push(vertex);}}while (!stack.isEmpty()){Vertex pop = stack.pop();//储存拓扑排序后的结构etvStack.push(pop);//遍历出度Edge edge = pop.firstEdge;while (edge != null){Vertex vertex = graph.get(edge.toVertex);vertex.inNumber --;if (vertex.inNumber == 0){stack.push(vertex);}//赋值更大的距离给 etvif (etv[pop.data] + edge.weight > etv[edge.toVertex]){etv[edge.toVertex] = etv[pop.data] + edge.weight;}edge = edge.next;}}//2.通过 etv 反向推导求出 ltv「事件最晚发生时间」System.out.println("====etv====");for (int i = 0; i < etv.length; i++) {System.out.print("V"+i +" = "+etv[i]+" ");}System.out.println();//初始化 ltvInteger endVertex = etvStack.peek().data;for (int i = 0; i < ltv.length; i++) {ltv[i] = etv[endVertex];}while (!etvStack.isEmpty()) {Vertex pop = etvStack.pop();Edge edge = pop.firstEdge;while (edge != null) {//赋值更小的距离给 ltvif (ltv[pop.data] > ltv[edge.toVertex] - edge.weight) {ltv[pop.data] = ltv[edge.toVertex] - edge.weight;}edge = edge.next;}}System.out.println("====ltv====");for (int i = 0; i < ltv.length; i++) {System.out.print("V"+i +" = "+ltv[i]+" ");}System.out.println();//3. 通过 etv 求 eteint index = 0;for (Vertex vertex : graph) {Edge edge = vertex.firstEdge;while (edge != null){ete[index++] = etv[vertex.data];edge = edge.next;}}System.out.println("====ete====");for (int i = 0; i < ete.length; i++) {System.out.print("E"+i +" = "+ete[i]+" ");}System.out.println();//4. 通过 ltv 求 lteindex = 0;for (Vertex vertex : graph) {Edge edge = vertex.firstEdge;while (edge != null){lte[index++] = ltv[edge.toVertex] - edge.weight;edge = edge.next;}}System.out.println("====lte====");for (int i = 0; i < lte.length; i++) {System.out.print("E"+i +" = "+lte[i]+" ");}System.out.println();//5. 用 lte - ete 求关键路径 System.out.println("====关键路径====");for (int i = 0; i < ete.length; i++) {if (lte[i] - ete[i] == 0) {System.out.print("E"+i+" ");}}return ;}/** 测试 */public static void main(String[] args) {char[] vertices = new char[]{'A','B','C','D','E','F','G'};Edge e3 = new Edge(2, 4, null);Edge e2 = new Edge(1, 3, e3);Edge e1 = new Edge(3, 2, e2);Edge e0 = new Edge(2, 1, e1);Edge e4 = new Edge(1, 5, null);Edge e5 = new Edge(1, 5, null);Edge e6 = new Edge(1, 5, null);Edge e7 = new Edge(1, 5, null);Edge e8 = new Edge(2, 6, null);Vertex a = new Vertex(0, 0, e0);Vertex b = new Vertex(1, 1, e4);Vertex c = new Vertex(1, 2, e5);Vertex d = new Vertex(1, 3, e6);Vertex e = new Vertex(1, 4, e7);Vertex f = new Vertex(4, 5, e8);Vertex g = new Vertex(1, 6, null);ArrayList<Vertex> graph = new ArrayList<>();graph.add(a);graph.add(b);graph.add(c);graph.add(d);graph.add(e);graph.add(f);graph.add(g);criticalPath(graph);}
}

结果:

====etv====
V0 = 0 V1 = 2 V2 = 3 V3 = 1 V4 = 2 V5 = 4 V6 = 6 
====ltv====
V0 = 0 V1 = 3 V2 = 3 V3 = 3 V4 = 3 V5 = 4 V6 = 6 
====ete====
E0 = 0 E1 = 0 E2 = 0 E3 = 0 E4 = 2 E5 = 3 E6 = 1 E7 = 2 E8 = 4 
====lte====
E0 = 1 E1 = 0 E2 = 2 E3 = 1 E4 = 3 E5 = 3 E6 = 3 E7 = 3 E8 = 4 
====关键路径====
E1 E5 E8 

这篇关于数据结构 图论09 关键路径(AOE)网 通俗易懂的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260655

相关文章

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

【408DS算法题】039进阶-判断图中路径是否存在

Index 题目分析实现总结 题目 对于给定的图G,设计函数实现判断G中是否含有从start结点到stop结点的路径。 分析实现 对于图的路径的存在性判断,有两种做法:(本文的实现均基于邻接矩阵存储方式的图) 1.图的BFS BFS的思路相对比较直观——从起始结点出发进行层次遍历,遍历过程中遇到结点i就表示存在路径start->i,故只需判断每个结点i是否就是stop

Java第二阶段---09类和对象---第三节 构造方法

第三节 构造方法 1.概念 构造方法是一种特殊的方法,主要用于创建对象以及完成对象的属性初始化操作。构造方法不能被对象调用。 2.语法 //[]中内容可有可无 访问修饰符 类名([参数列表]){ } 3.示例 public class Car {     //车特征(属性)     public String name;//车名   可以直接拿来用 说明它有初始值     pu

Android Environment 获取的路径问题

1. 以获取 /System 路径为例 /*** Return root of the "system" partition holding the core Android OS.* Always present and mounted read-only.*/public static @NonNull File getRootDirectory() {return DIR_ANDR

图的最短路径算法——《啊哈!算法》

图的实现方式 邻接矩阵法 int[][] map;// 图的邻接矩阵存储法map = new int[5][5];map[0] = new int[] {0, 1, 2, 3, 4};map[1] = new int[] {1, 0, 2, 6, 4};map[2] = new int[] {2, 999, 0, 3, 999};map[3] = new int[] {3, 7