【LeetCode】145. 二叉树的后序遍历 [ 左子树 右子树 根结点]

2023-10-22 06:04

本文主要是介绍【LeetCode】145. 二叉树的后序遍历 [ 左子树 右子树 根结点],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接


在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

Python3

方法一: 递归 ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup O(n)⟯

在这里插入图片描述

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:"""后序遍历 [ 左子树 右子树 根结点 ] 递归 """def postorder(node):if not node:return postorder(node.left) # 左子树 postorder(node.right) # 右子树ans.append(node.val)  # 根结点ans = []postorder(root)return ans

方法二: 迭代 ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup O(n)⟯

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:"""后序遍历 [左子树  右子树  根]  迭代"""ans = []stack = []cur = rootpre = Nonewhile cur or stack:while cur:stack.append(cur)cur = cur.left # 左cur = stack.pop()if not cur.right or cur.right == pre: ## 右边 已遍历完ans.append(cur.val) # 根 pre = cur cur = None else:stack.append(cur)cur = cur.right  # 右return ans

在这里插入图片描述

方法三: Morris ⟮ O ( n ) 、 O ( 1 ) ⟯ \lgroup O(n)、O(1) \rgroup O(n)O(1)⟯

在这里插入图片描述

写法一
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:""" 后序遍历 [ 左子树 右子树 根 ]  Morris  O(N) O(1)"""### 写法一  根 右 左   反转结果列表  # 根据 前序遍历 修改ans = []cur, pre = root, None while cur:if not cur.right:ans.append(cur.val)  ##cur = cur.left# 有右孩子else:# 找 pre pre = cur.right while pre.left and pre.left != cur:pre = pre.left  if not pre.left: ## 找到 mostleftpre.left = curans.append(cur.val)  ## cur = cur.rightelse:pre.left = None cur = cur.leftreturn ans[::-1]
写法二
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:""" 后序遍历 [ 左子树 右子树 根 ]  Morris  O(N) O(1)"""## 需要 增加 一个 反转模块def addPath(node: TreeNode):count = 0while node:count += 1ans.append(node.val)node = node.righti, j = len(ans) - count, len(ans) - 1while i < j:ans[i], ans[j] = ans[j], ans[i]i += 1j -= 1### ans = []cur, pre = root, None while cur:if not cur.left:cur = cur.right # 有左孩子else:# 找 pre pre = cur.left while pre.right and pre.right != cur:pre = pre.right  if not pre.right:pre.right = curcur = cur.left else:pre.right = None addPath(cur.left) ## cur = cur.right addPath(root)  ## return ans 

C++

方法一: 递归 ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup O(n)⟯

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:// 子模块void postorder(TreeNode* node, vector<int> &ans){if (node == nullptr){return;}postorder(node->left, ans);postorder(node->right, ans);ans.emplace_back(node->val);}// 主模块vector<int> postorderTraversal(TreeNode* root) {vector<int> ans;postorder(root, ans);return ans;}
};

方法二: 迭代 ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup O(n)⟯

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {vector<int> ans;stack<TreeNode*>stk;TreeNode* cur = root;TreeNode* pre = nullptr;while (cur != nullptr || !stk.empty()){while (cur != nullptr){stk.emplace(cur);cur = cur->left;}cur = stk.top();stk.pop();if (cur->right == nullptr || cur->right == pre){// 右子树 遍历完,处理根结点ans.emplace_back(cur->val);pre = cur;cur = nullptr;}else{// 右子树stk.emplace(cur);cur = cur->right;}}return ans;}
};

方法三: Morris ⟮ O ( n ) 、 O ( 1 ) ⟯ \lgroup O(n)、O(1) \rgroup O(n)O(1)⟯

写法一
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {vector<int> ans;TreeNode* cur = root;TreeNode* pre = nullptr;while (cur != nullptr){if (cur->right == nullptr){ans.emplace_back(cur->val);cur = cur->left;}else{// 找 pre pre = cur->right;while (pre->left != nullptr && pre->left != cur){pre = pre->left;}if (pre->left == nullptr){pre->left = cur;ans.emplace_back(cur->val);cur = cur->right;}else{pre->left = nullptr;cur = cur->left;}}}reverse(ans.begin(), ans.end()); // 该函数为 void ,不能直接返回return ans;}
};
写法二
/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:// 子模块void addPath(TreeNode* node, vector<int> &ans){int count = 0;while (node != nullptr){count += 1;ans.emplace_back(node->val);node = node->right;}int i = ans.size() - count, j = ans.size() - 1;while (i < j){swap(ans[i], ans[j]);i += 1;j -= 1;}}// 主模块vector<int> postorderTraversal(TreeNode* root) {vector<int> ans;TreeNode* cur = root;TreeNode* pre = nullptr;while (cur != nullptr){if (cur->left == nullptr){cur = cur->right;}else{//找 pre pre = cur->left;while (pre->right != nullptr && pre->right != cur){pre = pre->right;}if (pre->right == nullptr){pre->right = cur;cur = cur->left;}else{pre->right  = nullptr;addPath(cur->left, ans);cur = cur->right;}}}addPath(root, ans);return ans;}
};

这篇关于【LeetCode】145. 二叉树的后序遍历 [ 左子树 右子树 根结点]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/259525

相关文章

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

leetcode-24Swap Nodes in Pairs

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode swapPairs(L

leetcode-23Merge k Sorted Lists

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode mergeKLists

C++ | Leetcode C++题解之第393题UTF-8编码验证

题目: 题解: class Solution {public:static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num &

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

【JavaScript】LeetCode:16-20

文章目录 16 无重复字符的最长字串17 找到字符串中所有字母异位词18 和为K的子数组19 滑动窗口最大值20 最小覆盖字串 16 无重复字符的最长字串 滑动窗口 + 哈希表这里用哈希集合Set()实现。左指针i,右指针j,从头遍历数组,若j指针指向的元素不在set中,则加入该元素,否则更新结果res,删除集合中i指针指向的元素,进入下一轮循环。 /*** @param

LeetCode:64. 最大正方形 动态规划 时间复杂度O(nm)

64. 最大正方形 题目链接 题目描述 给定一个由 0 和 1 组成的二维矩阵,找出只包含 1 的最大正方形,并返回其面积。 示例1: 输入: 1 0 1 0 01 0 1 1 11 1 1 1 11 0 0 1 0输出: 4 示例2: 输入: 0 1 1 0 01 1 1 1 11 1 1 1 11 1 1 1 1输出: 9 解题思路 这道题的思路是使用动态规划