Leetcode—2530.执行K次操作后的最大分数【中等】(C语言向上取整数学公式)

本文主要是介绍Leetcode—2530.执行K次操作后的最大分数【中等】(C语言向上取整数学公式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023每日刷题(五)

Leetcode—2530.执行K次操作后的最大分数

在这里插入图片描述

向上取整思想

参考了这篇文章
在这里插入图片描述
有人肯定会问,这个向上取整为什么是这样来的。接下来我简单讲解一下。

数学式: x y 数学式:\frac{x}{y} 数学式:yx有以下两种情况

  • x能整除y,则 x y \frac{x}{y} yx就是向上取整和向下取整结果一致的情况,不需要额外转换。也就是说 x y \frac{x}{y} yx的向上取整和向下取整都是它本身,例如 6 3 = 2 \frac{6}{3}=2 36=2 6 3 \frac{6}{3} 36向下取整和向上取整结果都一样,即为2
  • x不能整除y,则 x y \frac{x}{y} yx是向下取整结果,不符合我们的需求。例如 5 2 = 2 \frac{5}{2}=2 25=2,但是我们需要它的向上取整的值,就不能直接用/。

解释一下 ( x + y − 1 ) / y (x + y - 1) / y (x+y1)/y

  • 如果x能整除y,那么 ( x + y − 1 ) / y (x + y - 1) / y (x+y1)/y的结果就等价于 x / y x / y x/y,例如 6 3 = 2 \frac{6}{3}=2 36=2
  • 如果x不能整除y,那么 ( x + y − 1 ) / y (x + y - 1) / y (x+y1)/y结果就是向上取整的值。例如 x = 5 , y = 2 x=5,y=2 x=5,y=2,则 ( 5 + 2 − 1 ) / 2 = 3 (5 + 2 - 1) / 2 = 3 (5+21)/2=3,即为 5 2 \frac{5}{2} 25向上取整的值。

你也可以这么理解,

  • 若x能整除y,例如x=2y,所以向上整除为2
  • 若x不能整除y,例如x=2y+1,也可以是 [ 2 y + 1 , 3 y ) \left[2y+1, 3y\right) [2y+1,3y),所以 ( x + y − 1 ) / y = ( 2 y + 1 + y − 1 ) = 3 (x + y - 1) / y = (2y + 1 + y - 1) = 3 (x+y1)/y=(2y+1+y1)=3

直接法实现代码

void max(int *nums, int numsSize, int *e) {int i = 0;int max = nums[0];int cnt = 0;for(i = 1; i < numsSize; i++) {if(max < nums[i]) {max = nums[i];cnt = i;}}*e = cnt;
}long long maxKelements(int* nums, int numsSize, int k){int i = 0;long long ans = 0;int cur = 0;for(; i < k; i++) {max(nums, numsSize, &cur);ans += nums[cur];nums[cur] = (nums[cur] + 2) / 3;}return ans;
}

测试结果

在这里插入图片描述
因为我的时间复杂度太大了,即 O ( k n ) O(kn) O(kn),主要是也没要求时间复杂度啊。。。接下来用最大堆的方法做,也就是大根堆

最大堆实现代码

void swap(int *a, int *b) {int tmp = *a;*a = *b;*b = tmp;
}void downAdjustHeap(int* heap, int low, int high) {// 相当于双亲为i,左孩子为2*i+1,右孩子为2*i+2,因为这里数组从下标0开始int i = low, j = i * 2 + 1;while(j <= high) {if(j + 1 <= high && heap[j + 1] > heap[j]) {j = j + 1;}if(heap[j] > heap[i]) {swap(&heap[j], &heap[i]);i = j;j = j * 2 + 1;} else {break;}}
}void createHeap(int* arr, int n) {// 建立大顶堆int i;for(i = n / 2 - 1; i >= 0; i--) {downAdjustHeap(arr, i, n - 1);}
}long long maxKelements(int* nums, int numsSize, int k){// 建立大顶堆,即最大堆createHeap(nums, numsSize);long long ans = 0;int i;for(i = 0; i < k; i++) {ans += nums[0];// 向上取整nums[0] = (nums[0] + 2) / 3;downAdjustHeap(nums, 0, numsSize - 1);}return ans;
}

在这里插入图片描述

测试结果

在这里插入图片描述
之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏,你的每一个赞每一份关注每一次收藏都将是我前进路上的无限动力 !!!↖(▔▽▔)↗感谢支持!

这篇关于Leetcode—2530.执行K次操作后的最大分数【中等】(C语言向上取整数学公式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/258149

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个