【COMP305 LEC 3 LEC 4】

2023-10-22 00:05
文章标签 lec comp305

本文主要是介绍【COMP305 LEC 3 LEC 4】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LEC 3 A basic abstract model for a biological neuron

1. Weights of connections

Neuron gets fired if it has received from the presynaptic neurons 突触前神经元 a summary impulse 脉冲, which is above a certain threshold.

Signal from a single synapse突触 may sometime overcome the threshold and push a neuron to fire an action potential, but other synapses can achieve this only by simultaneously delivering their signals: Some inputs are more important!

定义:

Therefore, input from every synapse, or “connection”, to the neuron in the abstract model must be assigned with some value w, called connection strength or weight of connection, to describe the importance of a connection.

2. Model

1. The abstract neuron is excited when weighted sum is above the threshold 0

vs. 

The biological neuron is excited when the signal density (spatial or temporal summation) is above the excitation potential threshold.

2. Output is either 1 or 0

vs. 

Only the spikes(峰值)are remembered

LEC 4

Topic 2. The McCulloch-Pitts Neuron (1943) 

1. McCulloch and Pitts demonstrated that 

“...because of the all-or-none character of nervous activity, neural events and the relations among them can be treated by means of the propositional logic”. 

2. The authors modelled the neuron as

      a.  a binarydiscrete-time input

       b. discrete-time:

The basic idea was to divide time into units, i.e., steps, and in each time period at most one spike can be initiated in the axon of a given neuron

将时间分成单位和步骤,每个时间一个神经元的轴突最多产生一次峰值

uniform velocity 脉冲基本都以匀速传播

Thus, the McCulloch-Pitts neuron operates on a discrete time scale

t = 0,1,2,3, …

        c. binary input:

The types of the input and the output of a MP neuron are thus unified.

        d. with excitatory and inhibitory connections 有着兴奋和抑制之间的联系 and an excitation threshold. 兴奋阙值

The network of such elements was the first model to tie the study of neural networks to the idea of computation in its modern sense.

将神经网络和现代意义上的计算思想联系起来

         e. with excitatory and inhibitory connections 有着兴奋和抑制之间的联系 and an excitation threshold. 兴奋阙值

         f. The network of such elements was the first model to tie the study of neural networks to the idea of computation in its modern sense. 将神经网络和现代意义上的计算思想联系起来

        g. excitatory and inhibitory connections :

The weight of connection wi are:

 +1 for excitatory type connection and 加一促进

Cerebral pyramidal cell:

 -1 for inhibitory type connection. 减一抑制

    h. Threshold

     I. MP Neuron

In the MP neuron, we call the instant total input

St-1: instant state of the neuron

    j. Actication Function

这篇关于【COMP305 LEC 3 LEC 4】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/257807

相关文章

lec(logic equivalence check)--cadence 等价性检查工具理解

文章目录 1. lec是独立的,不基于任何指定的综合工具。key point mappingummapped points有三类 formal functional comparison algorithms两种comparison方式 2. setup mode 和 lec mode3. blackboxsetreport 4. unreachable key points设置选项,尽量避

LEC/FORMAL --- PARTI 原理介绍

LEC:lec(logic equivalence checking)又叫formal check,是对ic design的综合,PR前后的设计进行逻辑对比检查的工具/手段,保证综合不改变rtl原始的logic function。目前用的较多的就是C家的formal工具。接下来介绍一下lec的原理和流程 1. Lec 原理介绍: 之所以搞这个lec,是因为在rtl实现的过程中,会进行各种的

兰纳Lanner工控机维修Lanner Electronics电脑维修LEC-7900D

该平台使用Lanner基于Intel x86的 Whitebox Solutions硬件产品组合,以及Enea NFV Access,这是一个虚拟化化管理平台,具有为uCPE设计的很小软件占用空间。全套的解决方案从具有2核Intel Atom CPU和2GB内存入门级LUNA-D125扩展到NCA-4010等Xeon设备。 强大的可扩展性直接转化为大批量部署的成本效率,这是零售,销售点和物流等业

Conformal lec learing1: key points

验证方法:Exhaustive static verification of key point pairs using mathematical algorithms 一种静态比较,会遍历所有的组合保证逻辑等价性,不需要动态激励

Conformal lec learning2: tclmode, vpxmode

在conformal中除了有SETUP, LEC mode 外,还有tcl interface

Conformal lec learning7: abort points

在conformal lec 检查等价性的过程中,遇到abort points 是比较头疼的,可以通过以下方式避免

Conformal lec learning5: analyze commands

在debug NEQ 的时候,可以使用analyze 相关command,帮助使用者快速定位NEQ原因

Conformal lec learning4: Diagnosis Manager

Diagnosis manager 对debug NEQ 帮助很大,其中的信息也是丰富,理解里面的内容,对解决NEQ 很有帮助。

【COMP305 LEC 1 2】

Part 1 Artificial Neural Networks(ANN) Topic 1 Historical/Biological Introduction 1. Biological Excitability      (a.  Virtually all living cells maintain an electrical potential difference betwe