标准图数据

2023-10-21 23:40
文章标签 数据 标准图

本文主要是介绍标准图数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、节点分类

1. BA-Shapes:单图,包括一个300节点的Barabasi-Albert(BA)子图和80个“房子”图案,这些图案被随机的加在BA图的节点上,并且加入随机边进行干扰。
该图没有节点特征。节点在基本图上是类型0,在“房子”的顶部,中部,底部分别为类型1-3.

 2.BA-community:包含两个BA图(社区),每一个BA图的节点特征符合高斯分布,根据不同社区的不同成员身份总共分成8个类
 

 3. Tree-Cycles:二分树作为基图,80个6节点循环图被附加于基本图随机节点上。
 

 4. Tree-Grid:基本图与Tree-Cycles类似,但用3×3的网络图代替循环图。

 二、 图分类
1. BA-2motifs dataset:800个子图,采用BA图为基图,一半的附加图为“房子”图案,其余是附有5节点的循环图案(根据附加图的不同,可分为2种类型的图)

 2. MUTAG(真实图):由4337个分子图组成,根据诱变效应分为两类。碳环中含有NH2和NO2原子团被认为是有诱变性的,而没有诱变性的分子也含有碳环。因此,我们可以将碳环作为基本图(共有图),将NH2和NO2原子团作为突变基图的基序(附加图,判据图)

 

三、评估指标
1、定性评估:在上面的图示中,黑边表示具有重要权重的边(按top-k排序)。并且可以明显地看出高权重边被赋予BA-Shapes和BA-Community的“house”图,Tree-Cycles和BA-2motifs的循环图,Tree-Grid的网格图,以及MUTAG的NO2原子团。
2、定量评估:此处将解释问题量化为边的二元分类。将重要图案的边视为正性边,否则为负性边。解释方法所得出的重要性权重被视为预测得分。较好的解释方法是赋予真实重要图案的边较高的权重,采用AUC作为定量评估的指标。特别地,对于MUTAG数据集,只考虑诱导图,因为非诱导图不存在明显的诱变原子团。
每个实验重复10次,得出AUC的平均值和标准差。

PGExplainer利用图生成模型的参数化解释网络,对多个实例共同提供解释。因此,PGExplainer可以拥有gnn的全局视图,这就解释了为什么PGExplainer可以比GNNExplainer表现得更好。

(38条消息) 模型评估指标AUC(area under the curve)_Webbley的博客-CSDN博客_auc值

3、效率评估:PGExplainer的解释网络可以在所有实例中共享(权值),因此,一个训练后的PGExplainer可以用来解释归纳设置中的新实例。用推理时间标识解释器解释一个新实例的时间,由于GNNExplainer必须对模型进行再训练,所以相比之下,PGExplainer大幅度降低推理时间,其计算效率是GNNExplainer的108倍,因此,PGExplainer更适合大规模数据。
4、归纳评估:
1)AUC随着训练实例的增加而增加。
2)训练的实例数越多,标准差越小,PGExplainer更倾向于全局检测共享图案,鲁班性更高。
3)PGExplainer只需要少量的训练实例就能取得相对较好的性能。

 5、图大小和交叉熵约束性能

6、连通约束:
该类约束指的是更多的边会约束在重要节点上。下图可以看出,通过连通约束,PGExplainer更倾向于提供一个连通子图作为解释图。

 
7、特征选择:可以参考GNNExplainer做特征掩码。

这篇关于标准图数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/257693

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.