CAT表中EMM PID 和 PMT表中ECM 的解析

2023-10-21 14:50
文章标签 解析 cat pid 表中 ecm emm pmt

本文主要是介绍CAT表中EMM PID 和 PMT表中ECM 的解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://blog.csdn.net/kehyuanyu/article/details/22402497

直播中播放加扰节目时,常常启动播放流程(申请设备链,tuner,demux,audio decoder ,video decoder)之后,通常画面还是不能出来的。此时需要我设置当前节目的EMM PID,ECM PID到CA里面。解扰的大致流程是,第三方CA收到EMM PID之后,利用智能卡中的中固化的PDK(中间件层密钥)从EMM中解出 业务密钥SK ,然后在利用业务密钥从解出对应的ECM PID中解出对应的控制字CW ,最后将得到的控制字设置到解码芯片相应的寄存器即可完整解扰。

另外需要普及一下,ECM 控制加扰的信息可以是节目级别,也可以是流级别,也就是program level 或者是es level 级别,es 流可以是音频的,视频的,或者其他类型,也就是说可以整体加扰控制,也可以分开控制一个节目音频,视频等等。

借用网上剪辑的图加以说明:

                                       

对于CA厂商来说,通常只会提供几个接口给STB厂商来设置EMM PID ,CA system ID, ECM PID ,Service ID,当然这些参数也会根据大厂商定制化的需要发生一些变动。

EMM ,ECM ,CA system ID数据的来源

EMM ,ECM ,CA system ID 存在于CAT,PMT两个表中,这两个表一般都是通过设置filter向驱动请求CAT 表和对应PMT表,有个相同点是,这些信息都存在于CA_descriptor() 的描述字段中。

ca 描述字段的结构如下:

                                                  

解析的代码如下:

BOOL ca_descriptor_parse(BYTE* buf , int nlength,int *pnCAsysID ,int *pnEcmpid)
{int ndescriptor = 0;int ndes_length = 0;int nCASystemID = 0;int nelementPID = 0;BYTE *pByte     = NULL;if(buf == NULL || nlength <=  0){printf("param error!\n");return FALSE;}pByte = buf;while(nlength > 0){ndescriptor = pByte[0];ndes_length = pByte[1];if(ndescriptor == 0x09){nCASystemID = (pByte[3]<<8 | pByte[4]);//  nelementPID = ((pByte[5]&0x1f)<<8 | pByte[6]);nelementPID = (pByte[5]<<8 | pByte[6]) & 0x1fff ;}*pnCAsysID = nCASystemID;*pnEcmpid = nelementPID;nlength -= ndes_length;printf("CA system ID : %d ,ECM/EMM PID : %d",nCASystemID ,nelementPID);}return TRUE;
}


CA_system_ID :表示适用于相关ECM和EMM流的相关的CA系统类型(CA厂家标识符)。

CA_PID : PMT表中的该描述信息为ECM的PID,CAT 表中的该描述信息为EMM的PID。

ca_descriptor描述符的值是0x09,也即descriptor_tag 的值,如图:

CAT:

                      

PMT:

                        

ECM 的解析

                                                                                

结合上面两张图来看,解析代码如下:

BOOL ECMParse(BYTE* pBuf , int nLen )
{int nTableID     = 0;int nSectionLen = 0;int nServiceID    = 0;int nProgramLen = 0;if(pBuf == NULL || nLen < 12 || nLen > 4096){printf("param error!\n");return FALSE;}nTableID = pBuf[0];if(nTableID != 0x02){printf("The Table is not PMT table!\n");return FALSE;}nSectionLen = ((pBuf[1]&0x0f) << 8 )| pBuf[2];
//    nSectionLen = ((pBuf[1]<< 8 )| pBuf[2])& 0x0fff;if(nLen != nSectionLen + 3 ){printf("section error!\n");return FALSE;}nServiceID  = (pBuf[3] << 8) | pBuf[4];// program numberpBuf         = pBuf + 10 // move pointer to the second reserved fieldnLen        = nLen - 10;nProgramLen = ((pBuf[0]&0x0f) << 8 |pBuf[1]);// get the program info length if(nProgramLen + 7 >= nSectionLen){printf("Bad Data!\n");return FALSE;}pBuf        = pBuf    + nProgramLen;// move the pointer to the CA descriptor fieldnLen        = nLen    - nProgramLen;// TS level ecm parseint nTSCasysID = 0;int nTSEcmPID = 0;int noffest =  //the offest to the global ca_descriptor fieldca_descriptor_parse(pBuf+noffest , nLen-noffest ,&nTSCasysID , &nTSEcmPID);//program level ecm parse while(nLen >5) // make sure the ca_descriptor have data{int eStreamType = 0;int nEsPid         = 0;int nESInfoLen    = 0;int nLength        = 0;int nCAsysID    = 0;int nEcmPid        = 0;eStreamType = pBuf[0];nEsPid        = ((pBuf[1]&0x1f << 8) | pBuf[2]); // es stream pid ,audio pid ,video pid and so onnLength        = (((pcData[3] & 0x0F) << 8) | pcData[4]);if(wDiscriptorLen > nLen -5){printf("data error!\n");return FALSE;}pBuf        = pBuf + 5; // move the pointer to the ca_descriptor fieldnLen        = nLen - 5;ca_descriptor_parse(pBuf,nLen,&nCAsysID,&nEcmPid);        }return TRUE;
}

CAT表中的EMM解析比较简单就不作解释了。


以上解析动作尽量不要在播放过程中去请求,会消耗一定的时间,如果在播放之前解析好缓存起来,对直播速度会有一定的优化作用。


--------------------- 
作者:Tony_ke 
来源:CSDN 
原文:https://blog.csdn.net/kehyuanyu/article/details/22402497 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于CAT表中EMM PID 和 PMT表中ECM 的解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/255106

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提

Java中的runnable 和 callable 区别解析

《Java中的runnable和callable区别解析》Runnable接口用于定义不需要返回结果的任务,而Callable接口可以返回结果并抛出异常,通常与Future结合使用,Runnab... 目录1. Runnable接口1.1 Runnable的定义1.2 Runnable的特点1.3 使用Ru