本文主要是介绍别再用PS了,我用五行Python代码就实现了批量抠图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
别再用PS了,我用五行Python代码就实现了批量抠图
对于会PhotoShop的人来说,抠图是非常简单的操作了,有时候几秒钟就能扣好一张图。不过对于一些比较复杂的图,有时候还是需要花点时间的,今天就给大家带了一个非常快速简单的办法,用Python来批量抠取人像。
效果展示
刚开始,我也不看好什么自动抠图,总觉得不够精确,抠不出满意的图。下面我就直接展示一下效果图吧。
我们先看看原图 :
这张图片背景是纯色,我们平时用PhotoShop抠起来也比较简单,对我们计算机来说也不是什么难题,下面是效果图:
因为本身是PNG图片,而且原图是白色背景,所以看不出什么区别。为了显示效果,我把原图和抠好的图放到一张黄色背景图片上:
这样一看效果明显多了,感觉抠图效果还是非常好的。但是,抠这种简单的图片,不怎么过瘾,我们再来看看复杂一点的图片:
这张图片背景色比之前复杂一些,而且有渐变,我们来看看抠图后的效果如何:
这个原图背景不是白色,我就不弄黄色背景了,感觉这个效果也还算满意。
那么,对于多人物的图片,效果如何呢?我们再看看下面这张图片:
这里有三个人,我们看看程序能不能自动抠出来:
虽然是有点瑕疵,不过还是很不错了。
下面我们看看最后一个例子:
这个比前面的图都复杂的多,那么效果如何呢,我们来看看:
哈哈,不仅识别出了人,还把火炬识别出来并抠了出来。总的来说,在完成人物抠图方面是没有什么问题的。
这是如何实现的?
看完效果,你肯定想问这是如何实现的呢?这就需要用到飞桨了,飞桨是一个开源的深度学习平台,使用其工具仅用十几行代码就能实现迁移学习。
在使用之前,我们先来安装飞桨,可以进入官网,按指引快速安装:
https://www.paddlepaddle.org.cn/install/quick
为了方便,这里直接使用pip安装CPU版本的。我们执行下列语句:
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
安装完成后,可以在环境中测试一下是否成功。我这里使用命令行窗口,先运行python.exe(前提是你已经配置了环境变量):
C:\Users\zaxwz>python
然后在程序中运行如下代码:
import paddle.fluidpaddle.fluid.install_check.run_check()
如果控制台显示Your Paddle is installed successfully! Let's start deep Learning with Paddle now,就代表我们已经安装成功了。另外我们还需要安装PaddleHub:
pip install -i https://mirror.baidu.com/pypi/simple paddlehub
下面我们就可以开始写代码了。
开始抠图
实现抠图的代码很简单,大概分为下面几个步骤:
-
导入模块
-
加载模型
-
获取文件列表
-
抠图
实现起来没有什么难度,为了方便读代码,我将代码写清楚一点:
1、导入模块
import os
import paddlehub as hub
2、加载模型
humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')
3、获取文件列表
# 图片文件的目录
path = 'D:/CodeField/Workplace/PythonWorkplace/PillowTest/11_yellow/img/'
# 获取目录下的文件
files = os.listdir(path)
# 用来装图片的
imgs = []
# 拼接图片路径
for i in files:imgs.append(path + i)
#抠图
results = humanseg.segmentation(data={'image':imgs})
4、获取文件列表
我们在控制台运行一下这个程序:
python 抠图.py
输出:
[2020-03-10 21:42:34,587] [ INFO] - Installing deeplabv3p_xception65_humanseg module [2020-03-10 21:42:34,605] [ INFO] - Module deeplabv3p_xception65_humanseg already installed in C:\Users\zaxwz\.paddlehub\modules\deeplabv3p_xception65_humanseg [2020-03-10 21:42:35,472] [ INFO] - 0 pretrained paramaters loaded by PaddleHub |
运行完成后,我们可以在项目下看到humanseg_output目录,抠好的图片就会存放在该目录下。当然了,上面的代码我们在获取文件列表的操作还可以简化一下:
import os, paddlehub as hub
humanseg = hub.Module(name='deeplabv3p_xception65_humanseg') # 加载模型
path = 'D:/CodeField/Workplace/PythonWorkplace/PillowTest/11_yellow/img/' # 文件目录
files = [path + i for i in os.listdir(path)] # 获取文件列表
results = humanseg.segmentation(data={'image':files}) # 抠图
至此,我们就完成了5行代码批量抠图,感兴趣的开发者赶紧上手试试吧!
飞桨官网:
https://www.paddlepaddle.org.cn/
PaddleHub平台:
https://github.com/PaddlePaddle/PaddleHub
飞桨开源框架项目地址:
GitHub:https://github.com/PaddlePaddle/Paddle
Gitee: https://gitee.com/paddlepaddle/Paddle
如在使用过程中有问题,可加入飞桨官方QQ群进行交流:703252161
END
这篇关于别再用PS了,我用五行Python代码就实现了批量抠图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!