开关电源环路学习笔记(8)-如何快速看出零点和极点

2023-10-21 10:10

本文主要是介绍开关电源环路学习笔记(8)-如何快速看出零点和极点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不知不觉,环路内容已经写了7节了,以理论分析为主,下面来说说兄弟们都很关心的内容——零点和极点。

前面几节内容,我们已经将传递函数的来源,推导过程说明白了。有了传递函数,我们就能够画出波特图,就能够分析系统到底稳不稳定。

但是问题来了,假如我们得到的波特图表明这个系统是不稳定的,那么该如何调整呢?该修改什么器件呢?或者说一个原本稳定的系统,但是我们想修改其中某个元件,会不会造成系统不稳定?总不至于每次修改一个器件,然后画出传递函数看看长什么样子,不行就接着改?这种鸟枪法总归不好。

鸟枪法不行,自然有更好的法子,那就是找到一些特殊点进行分析。这些特殊点,就是零点和极点,零点和极点可以帮助我们调整电路。

关于零点和极点,结合我自己的经验,我觉得以下几个问题是值得思考一下的

1、传递函数中,让分母为0的频率点叫极点,既然分母为0,那算出来的值不是无穷大吗?增益无穷大?这也能出现?

2、老是看到说增加一个电容,就增加了一个极点,增加一个电阻,就增加了一个零点,这到底是怎么回事?其中的道理又是为什么?

3、拿到具体的电路,那个零极点如何能直接看出来呢?

这一节就来看看上面这几个问题吧。

零点和极点的定义

先来复习一下概念,什么是零点和极点,一般教材上面给出的定义大致是这样的:

极点

上面这个很好理解,清晰明了,但是一个大坑也就随之而来了。如果从数学公式的角度看,这定义没啥好说的,该咋样咋样。

但是一放到电路里面去,就尴尬了,H(s)的物理意义不是输出除以输入吗?

那极点的意思不就是使输出为无穷大的点,既然输出无穷大了,那么系统肯定是不稳定的,那么我们常说的极点又到底是什么?

比如下面是从网上找的别人写的零点和极点的物理意义,难道自己写的时候不懵吗?

那怎么理解我上面这个问题呢?

结合实际的情况,系统的传递函数算出来的根一般是负数,而现实世界中是没有负频率的,貌似都是直接把负号去掉之后称为极点。

比如下面的低通滤波器的传递函数的极点:

假如R=1Khz,C=1uF,那么极点是s=-1000,但是我们通常说极点是1000,理由貌似是自然界中没有负频率,所以对s求了个模,频率w=|s|=1000,我们把这个求模后的值也还是叫极点,并没有重新取名字。

这个取了模之后的极点再代入原式子H(s)中,就不能够使H(s)等于无穷大了,当然了,也不能是无穷大,因为无穷大意味着系统不稳定。我们研究的电路系统一般是稳定的,所以基本上极点都是负的,或者说在复平面的左半平面。

不过,我们所有的系统的极点都是负的吗?都在左半平面吗?

我想也不是的,这让我想到了皮尔斯晶体振荡器,它输入为0,但是能够输出一个固定的频率的信号,即晶振的输出嘛,我猜它应该是有极点在右半平面的。因为晶振不就是要自己振荡起来吗?当然,我的猜测也可能是错误的,感兴趣的兄弟可以研究研究。

总之吧,对于具体的电路,我们常说的极点,已经不再是严格抠定义得到的极点了,而是取了绝对值之后的,其对应信号的频率都是正的,代入系统就不再能使输出无穷大。

极点就说这么多吧,来看看零点

零点

相对于极点一般都是负的,根据系统的不同,零点是有负的,也有正的,像boost,Buck-boost,Flyback都是有右半平面零点,也就是分子N(s)=0有正的根。

零点和极点定义的问题就先说这么多吧,总的来说,我们求解的零点和极点的时候,可以假设下频率可正可负的就好。

下面来看看,对于一个具体的电路,零点和极点都怎么快速的直接用眼睛“瞪”出来

如何快速找到系统的零极点

功率级传递函数目前我是找不到快速的方法的,不过放大和补偿级的传递函数,我倒是能想出点道道。

下面是常见的三种补偿方式

如何快速找到零极点呢?

其实思路很简单,我们列出对应的传递函数就行了,上面三种结构,传递函数其实不就是放大器的增益表达式吗?

传递函数都是:H(s)=实线椭圆阻抗/虚线网络阻,我们根据定义求出对应的点就行了。不过这个方法有点麻烦,还得计算。

简单一点是这么想,零点就是让输出为0的点,极点就是让输出为无穷大的点(这时候考虑负频率,就是求的时候假定负频率是存在的),然后我们去找对应的点就行了。

I型补偿

要想得到零点,那么我们就找使输出等于0的频率点,显然,要想输出等于0,必须C1的阻抗为0,电容的阻抗是1/sC,那么得频率为无穷大才行,一般我们不考虑无穷大的频率,所以说I型补偿没有零点。

要想得到极点,那么我们需要找使输出为无穷大的点,显然,输出无穷大,只需要电容C1的阻抗是无穷大就行,显然,频率为0时,输出阻抗1/sC为无穷大,也就是说0是I型补偿的极点。

所以,对于I型补偿,没有零点,有一个极点

II型补偿

同样的,要想得到零点,那么我们就找使输出等于0的频率点,显然,要想输出等于0,必须下面这一坨的阻抗为0

这一坨的结构是R2和C1串联后,再和C2并联。要想上面那一坨整体阻抗为0,要么C2的阻抗为0,要么R2和C1串联后的阻抗为0。

因为不考虑无穷大频率,所以C2的阻抗不可能为0。R2和C1串联后的阻抗是可以为0的,即R2+1/sC1=0,解出来就是s=-1/(R2*C1),我们取绝对值换算成频率,即有一个零点w=1/(2π*R2*C1)

同样的道理,极点就是下面一坨整体的阻抗为无穷大时的点

因为上面结构是并联的关系,首先,可以很容易观察到,当频率为0的时候,两个并联的支路阻抗都是无穷大,那么并联之后自然还是无穷大,即,0是这个补偿器的一个极点。

除此之外,R2和C1串联之后,再与C2并联,也会在其它的频率点等于无穷大,有一个简单方法,只需要把R2C1C2的阻抗相加等于0,算出来的点就是极点,原理是什么呢?

所以,我们把R2和C1,C2阻抗加起来,如果阻抗等于0,那么整体并联的阻抗就是无穷大的了,即R2+1/sC1+1/sC=0,那么最终极点就是:s=-(1/C1+1/C2)/R2。

取绝对值换算成频率:w=(1/C1+1/C2)/(2π*R2)

所以,对于II型补偿,有两个极点,一个零点。

III型补偿

由前面可知,II型补偿的零极点都是从反馈网络得来的,我们观察III型补偿,它的反馈网络和II型补偿一模一样。因此,III型补偿反馈网络产生的零极点,同II型补偿是一模一样的,也有两个极点和一个零点,就不再赘述了。

除了反馈网络,III型补偿在同相输入的电阻上面并联了电阻和电容,那么这个网络是否产生零极点呢?

自然是会的,不然III型补偿不就没用了吗?方法其实和前面差不多。

先看零点,零点是使输出为0的点,要想输出为0,那么虚线框的总阻抗为无穷大。并联之后阻抗要想等于无穷大,那么R1,R3,C3三者加起来的阻抗要等于0,原理还是下面这个

即:R1+R3+1/sC3=0,即s=-1/((R1+R3)*C3),取绝对值然后换算成频率:w=1/(2π*(R1+R3)*C3)

再看极点,极点是使输出为无穷大的点,要想输出为无穷大,那么虚线框的总阻抗为0。易知,当R3和C3串联的阻抗为0,那么虚线框的总阻抗就为0。R3+1/sC3=0,算得s=-1/(R3*C3),取绝对值之后换算成频率:w=1/(2π*R3*C3),即该频率点就是一个极点。

综上所述,III型补偿有3个极点,2个零点。

上面三种补偿汇总如下:

以上是我觉得,写出零极点最快的方式了,基本不用动笔,写得有点长,显得有点复杂。不过要是知道里面的道理,应该还是挺方便的。

小结

本节内容就写到这里了,主要针对常见的几种补偿,看怎么能做到“看着图把零极点看出来”。

 

这篇关于开关电源环路学习笔记(8)-如何快速看出零点和极点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253697

相关文章

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识