【高强度聚焦超声模拟器】模拟分层介质中的高强度聚焦超声波束和加热效应(Matlab代码)

本文主要是介绍【高强度聚焦超声模拟器】模拟分层介质中的高强度聚焦超声波束和加热效应(Matlab代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

【高强度聚焦超声模拟器】模块是一种用于模拟分层介质中高强度聚焦超声波束和加热效应的工具。它由两个模块组成,分别是求解轴对称聚焦超声换能器压力分布的KZK方程模块和根据处理方案计算加热和热剂量的模块。

在第一个模块中,通过求解KZK方程,可以得到轴对称聚焦超声换能器在分层介质中的压力分布。这些计算结果被转储到Matlab工作区,并生成了相应的显著图。这些数据对于后续的处理非常有用。

第二个模块根据用户定义的处理方案,利用第一个模块得到的压力分布来计算加热和热剂量。通过考虑波束的衍射、干涉效应,以及吸收的幂律频率依赖性和相速度色散等因素,可以得到时间平均强度和加热速率。接着,将加热速率分布作为生物热传递(BHT)方程的源,通过积分来确定温度和热剂量场。这些结果可以用于进一步的研究和后处理。

为了保持软件的高效和轻量化,该模拟器对系统资源的要求较低,同时力求提供快速而准确的计算结果。它是研究高强度聚焦超声技术和其在生物医学领域中应用的有力工具。详细讲解见第4部分。

📚2 运行结果

这是一个模拟100瓦,1.5兆赫兹的高强度聚焦超声(HIFU)束在水中传播5厘米,然后在组织中传播3厘米到达聚焦点,然后继续传播8厘米的过程。在模拟运行时:运行结果如下:

function[z,r,H,I,Ppos,Pneg]=axisymmetricKZK()
% Driver for axisymmetric KZK integrator.  % get system parameters:
[p0,c1,c2,rho1,rho2,N1,N2,G1,G2,gamma1,gamma2,a,b,d,f,R,Z,z_,K] = KZK_parameters();
K2 = 2*K;% print coefficients to screen:
fprintf('\n\tp0 = %2.2f MPa\n',1e-6*p0)
fprintf('\tN1 = %1.2f\tN2 = %1.2f\n',N1,N2)
fprintf('\tG1 = %3.2f\tG2 = %3.2f\n\n',G1,G2)F=0.5*d/a;
if(F<1.37)fprintf('\tWarning--f/%1.2f exceeds the conditions\n',F)fprintf('\tunder which KZK is derived (> f/1.37).\n\n')
end% grid set-up:
[M,J,J_,dz,dr,z,r]=computational_grid(Z,R,max(G1,G2),a,d,gamma2(1),N2);% dependent variables:
u = zeros(2*J,K);
w = zeros(2*J,K);
limit = 1/sqrt(1-(a/d)^2);
v = initial_condition(J,K,G1,r,b*limit/a,limit);
v(1:J,1) = v(1:J,1).*sqrt(1-(r/d).^2);
v(J+1:2*J,1) = v(J+1:2*J,1).*sqrt(1-(r/d).^2);% set up discretization operators:
for k=1:K[A1(k).IRK1,A1(k).IRK2,A1(k).CN1,A1(k).CN2] ...= KZK_operators(r,R,G1,dz,dr,J,k,gamma1(k));[A2(k).IRK1,A2(k).IRK2,A2(k).CN1,A2(k).CN2] ...= KZK_operators(r,R,G2,dz,dr,J,k,gamma2(k));
end
k1 = zeros(2*J,1);	% IRK slope vectors
k2 = zeros(2*J,1);
b1 = 1/sqrt(2);		% IRK coefficients
b2 = 1 - b1;% parameters for nonlinear integration:
mu1 = N1*K*dz/pi;		% nonlinear term integration parameters
mu2 = N2*K*dz/pi;
cutoff1 = gamma1(1)/10/N1;	% cutoffs for performing nonlinear integration
cutoff2 = gamma2(1)/10/N2;
X = zeros(1,K2);		% data vectors
Y = zeros(1,K2);
Xpeak = zeros(1,K2);% for plotting routines:
H = zeros(J_,M);		% Heating rate matrix
H2 = zeros(J_,M);
H(:,1) = real(gamma1(1))*(v(1:J_,1).^2 + v(J+1:J+J_,1).^2);
I = zeros(J_,M);
I(:,1) = v(1:J_,1).^2 + v(J+1:J+J_,1).^2;

function[z,r,H,I,Ppos,Pneg]=axisymmetricKZK()
% Driver for axisymmetric KZK integrator.  

% get system parameters:
[p0,c1,c2,rho1,rho2,N1,N2,G1,G2,gamma1,gamma2,a,b,d,f,R,Z,z_,K] = KZK_parameters();
K2 = 2*K;

% print coefficients to screen:
fprintf('\n\tp0 = %2.2f MPa\n',1e-6*p0)
fprintf('\tN1 = %1.2f\tN2 = %1.2f\n',N1,N2)
fprintf('\tG1 = %3.2f\tG2 = %3.2f\n\n',G1,G2)

F=0.5*d/a;
if(F<1.37)
  fprintf('\tWarning--f/%1.2f exceeds the conditions\n',F)
  fprintf('\tunder which KZK is derived (> f/1.37).\n\n')
end

% grid set-up:
[M,J,J_,dz,dr,z,r]=computational_grid(Z,R,max(G1,G2),a,d,gamma2(1),N2);

% dependent variables:
u = zeros(2*J,K);
w = zeros(2*J,K);
limit = 1/sqrt(1-(a/d)^2);
v = initial_condition(J,K,G1,r,b*limit/a,limit);
v(1:J,1) = v(1:J,1).*sqrt(1-(r/d).^2);
v(J+1:2*J,1) = v(J+1:2*J,1).*sqrt(1-(r/d).^2);

% set up discretization operators:
for k=1:K
  [A1(k).IRK1,A1(k).IRK2,A1(k).CN1,A1(k).CN2] ...
  = KZK_operators(r,R,G1,dz,dr,J,k,gamma1(k));
  [A2(k).IRK1,A2(k).IRK2,A2(k).CN1,A2(k).CN2] ...
  = KZK_operators(r,R,G2,dz,dr,J,k,gamma2(k));
end
k1 = zeros(2*J,1);    % IRK slope vectors
k2 = zeros(2*J,1);
b1 = 1/sqrt(2);        % IRK coefficients
b2 = 1 - b1;

% parameters for nonlinear integration:
mu1 = N1*K*dz/pi;        % nonlinear term integration parameters
mu2 = N2*K*dz/pi;
cutoff1 = gamma1(1)/10/N1;    % cutoffs for performing nonlinear integration
cutoff2 = gamma2(1)/10/N2;
X = zeros(1,K2);        % data vectors
Y = zeros(1,K2);
Xpeak = zeros(1,K2);

% for plotting routines:
H = zeros(J_,M);        % Heating rate matrix
H2 = zeros(J_,M);
H(:,1) = real(gamma1(1))*(v(1:J_,1).^2 + v(J+1:J+J_,1).^2);
I = zeros(J_,M);
I(:,1) = v(1:J_,1).^2 + v(J+1:J+J_,1).^2;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文章

这篇关于【高强度聚焦超声模拟器】模拟分层介质中的高强度聚焦超声波束和加热效应(Matlab代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

Java实现批量化操作Excel文件的示例代码

《Java实现批量化操作Excel文件的示例代码》在操作Excel的场景中,通常会有一些针对Excel的批量操作,这篇文章主要为大家详细介绍了如何使用GcExcel实现批量化操作Excel,感兴趣的可... 目录前言 | 问题背景什么是GcExcel场景1 批量导入Excel文件,并读取特定区域的数据场景2