深入mongoDB(1)--mongod的线程模型与网络框架

2023-10-21 02:58

本文主要是介绍深入mongoDB(1)--mongod的线程模型与网络框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近工作需要开始研究mongoDB,我准备从其源代码角度,对于mongod和mongos服务的架构、sharding策略、replicaset策略、数据同步容灾、索引等机制做一个本质性的了解。其代码约20万行(我研究的是 2.0.6版本源码),本篇先从mongod的启动流程说起,它本是一个多线程程序,所以本文在于说明mongod有多少个线程,每个线程的意义所在。希望大家阅读本文时关注在mongod的外围框架,暂不涉及数据文件的组织、索引B树的组织等,仅focus in在网络框架、线程模型上。


弄清楚这点的好处很明显:之后就可以有的放矢的研究mongod某个模块究竟是如何实现的,可以快速的跳到相应的类中阅读源码,解决我们在产品中的实际问题。我认为这是研究其庞大源码一个好的开始。


在说明mongod前,须了解mongoDB大量代码是基于boost库构建的,因此这里先行对boost库建立线程做个简单的了解。


1、boost库如何建立线程

boost::thread是boost中跨平台的多线程库,mongoDB创建线程时大多数情况下是使用thread库的(少量情况直接调用pthread_create方法),主要使用了以下两种方式:

(1)直接运行让线程运行func

例如durThread线程:

void durThread() {

while( !inShutdown() ) { ... }

}

boost::thread t(durThread);

(2)在类中定义静态的run方法,调用thread创建线程

    class FileAllocator : boost::noncopyable {
        static void run( FileAllocator * fa );


        void FileAllocator::start() {
             boost::thread t( boost::bind( &FileAllocator::run , this ) );
        }
    };


2、mongod的入口

mongod的入口main函数在src/mongo/db/db.cpp文件中,我画了个简单的活动图简要介绍其启动流程:


如上图所示,这里出现了12个固定线程,还没有包括mongod运行以后处理请求时派生出来的线程,如下所示:

–      interruptThread

–      DataFileSync::run

–      FileAllocator::run

–      durThread

–      SnapshotThread::run

–      ClientCursorMonitor::run

–      PeriodicTask::Runner::run

–      TTLMonitor::run

–      replSlaveThread

–      replMasterThread

–      webServerThread

–      处理数据库请求的主线程

如果不属于任何replica set,那么至少有10个固定线程(去除 replSlaveThread和 replMasterThread)。

下面我们先讨论这10个固定的线程,再讨论性能非常弱的监听web事件的线程是怎样处理请求的,最后讨论性能稍好一点的主服务线程是怎样处理请求的。


3、5个基于BackgroundJob类实现的工作线程

这5个线程分别是DataFileSync,SnapshotThread, ClientCursorMonitor, TTLMonitor, PeriodicTask,类图如下所示:


上面这5个类也是用boost::threadfunction方法创建线程运行的,它们继承了BackgroundJob类,使用go方法启动线程执行jobBody就是在启动线程执行run方法,如下所示:

    BackgroundJob& BackgroundJob::go() {boost::thread t( boost::bind( &BackgroundJob::jobBody , this, _status ) );return *this;}void BackgroundJob::jobBody( boost::shared_ptr<JobStatus> status ) {...run();...}	

这些线程的意义如下:

DataFileSync主要在调用MemoryMappedFile::flush方法将内存中的数据刷到磁盘上。 我们知道,mongodb是调用mmap把磁盘中的数据映射到内存中的,所以必须有一个机制时刻的刷数据到硬盘才能保证可靠性,多久刷一次是与syncdelay参数相关的。

SnapshotThread将生成快照文件帮助快速恢复。

ClientCursorMonitor将管理用户的游标,每4秒调用一次idleTimeReport()方法,每一分钟调用sayMemoryStatus()方法。

TTLMonitor管理TTL,通过调用doTTLForDB()方法检查所有db。

PeriodicTask将从动态数组std::vector<PeriodicTask* > _tasks中获取周期性任务执行。


4、5个直接提供全局方法执行的线程


FileAllocator用于分配新文件,它决定分配文件的大小,例如用翻倍的方式。

interruptThread只处理信号量。

durThread做批量提交和回滚工作。

replSlaveThread是当前结点作为secondary时的同步线程。

replMasterThread是当前结点作为master时的同步线程。


5、web监听线程

mongod是如何处理web请求的呢?它是通过网络框架中的核心类Listerner实现的,类图如下所示:


怎么理解这幅类图呢?

首先看 Listener类,它负责监听、创建新连接,其工作步骤如下:

a、创建socket句柄,绑定端口,监听

b、调用select检测新连接事件

c、对检测到的事件调用accept建立新连接

d、调用void Listener::acceptedMP(MessagingPort*mp)方法处理新连接,谁重新实现acceptedMP方法谁决定处理方式


这个Listener类既用于处理web请求,也用于处理普通的数据库请求。

OK,现在我们看web请求是如何处理的。MiniWebServer类继承了Listener类,它重新实现了acceptedMP方法,开始接收TCP流,解析HTTP协议,同时还会负责组装HTTP响应包并发送TCP流到客户端。那么实际完成http请求的类是谁呢?它是继承了MiniWebServer类的DbWebServer类。这个类重新实现了doRequest方法,它会在完整接收到HTTP请求后被调用,HTTP请求的处理过程不在本篇的讨论范围内,这里略过。但我们清楚了,这个线程采用同步的阻塞的方式处理请求,它意味着它同一时刻只能处理一个web请求,并发能力超级弱,还好web请求只是mongod的副业,仅用于查询状态。


6、主监听线程和数据请求的处理线程

处理数据库请求的是上图中的PortMessageServer 类,它运行在主线程中。

我们先看看PortMessageServer 类是如何实现acceptedMP方法的:

virtual voidacceptedMP(MessagingPort * p) {if ( !connTicketHolder.tryAcquire() ) {sleepmillis(2); // otherwisewe'll hard loopreturn;}…int failed =pthread_create(&thread, &attrs, (void*(*)(void*)) &pms::threadRun,p);…
}

很清晰,它开启了一个线程独立的执行这个请求。虽然这种方式依然性能极差:大量的进程间上下文切换在等着我们,但总比web请求处理要好多了,而且mongod的并发能力本来就不是它的长项。

对于每个新连接,都会有类封装成对象,如下:


接下来pms::threadRun方法是在处理MessagingPort对象。

下面看看pms::threadRun方法中做了些什么:

void threadRun( MessagingPort *inPort) {TicketHolderReleaserconnTicketReleaser( &connTicketHolder );Message m;try {LastError * le = newLastError();lastError.reset( le ); //lastError now has ownershiphandler->connected( p.get());while ( ! inShutdown() ) {if ( ! p->recv(m) ) {p->shutdown();break;}handler->process( m ,p.get() , le );}}handler->disconnected( p.get());
}

可以看到,它会在这个连接上接收完整的请求,之后会调用handler的process方法。这个handler又是什么呢?如下图所示:


所以,普通的数据库请求是由MyMessageHandler的process方法处理的。这个方法里也只是个封装,真正处理业务的是全局方法assembleResponse。

assembleResponse方法中会按照8种操作方式分别的调用DataFileMgr中的方法处理实际文件,例如:

enum Operations {opReply = 1,     /* reply. responseTo is set. */dbMsg = 1000,    /* generic msg command followed by a string */dbUpdate = 2001, /* update object */dbInsert = 2002,//dbGetByOID = 2003,dbQuery = 2004,dbGetMore = 2005,dbDelete = 2006,dbKillCursors = 2007
};

在方法中有类似这样的代码在调用实际的业务类处理操作:

                else if ( op == dbInsert ) {receivedInsert(m, currentOp);}else if ( op == dbUpdate ) {receivedUpdate(m, currentOp);}else if ( op == dbDelete ) {receivedDelete(m, currentOp);}

当然本篇志不在此,下篇我们再讨论索引和数据文件的操作。

 





这篇关于深入mongoDB(1)--mongod的线程模型与网络框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251466

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言