本文主要是介绍Deeplab v2 调试全过程(Ubuntu 16.04+cuda8.0),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Deeplab v2 调试全过程(Ubuntu 16.04+cuda8.0)
本人刚接触深度学习与caffe,经过几天的填坑,终于把Deeplabv2的 run_pascal.sh与run_densecrf.sh成功运行,现将调试过程整理如下:
一、安装必要的依赖库
安装 matio:
安装方法1:
sudo apt-get install libmatio-dev
安装方法2:
下载matio(https://sourceforge.net/projects/matio/files/matio/1.5.2/)
tar zxf matio-1.5.2.tar.gz
cd matio-1.5.2
./configure
make
make check
make install
sudo ldconfig
安装 wget
sudo pip install wget 出错
按照下面的命令成功:
pip install –upgrade pip –user
pip install –upgrade setuptools –user
sudo pip install wget二、下载Deeplabv2并编译
1、下载代码:
git clone https://github.com/xmojiao/deeplab_v2.git
(试过许多Deeplab代码,这个最容易编译成功,所以我用的是这个代码编译的)。
2、对 caffe 进行编译:
修改deeplab_v2/deeplab-public-ver2/路径下的 Makefile.config.example文件,重命名为Makefile.config,接着修改这个文件中的内容,将第四行的 “# USE_CUDNN := 1”的 # 去掉。如果需要,因为我用的pycaffe编译,所以不需要修改python的路径,保存退出。
下面为编译 caffe的命令:
cd ~/Desktop/deeplab_v2/deeplab-public-ver2
make all -j16
这时会出现下面的错误1:
src/caffe/net.cpp:8:18: fatal error: hdf5.h: No such file or directory
compilation terminated.
解决办法: 修改两个make文件(Makefile.config,Makefile)
Makefile.config:
将
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
修改为:
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnumake
Makefile:
将
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
修改为:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial matio
重新编译:
make all -j16
这时会出现下面的错误2:
./include/caffe/common.cuh(9): error: function “atomicAdd(double *, double)” has already been defined
**解决方法:打开./include/caffe/common.cuh文件,在atomicAdd前添加宏判断即可。
下面为修改后文件:**
// Copyright 2014 George Papandreou#ifndef CAFFE_COMMON_CUH_#define CAFFE_COMMON_CUH_#include <cuda.h>// CUDA: atomicAdd is not defined for doubles#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 600 #elsestatic __inline__ __device__ double atomicAdd(double *address, double val) {unsigned long long int* address_as_ull = (unsigned long long int*)address;unsigned long long int old = *address_as_ull, assumed;if (val==0.0)return __longlong_as_double(old);do {assumed = old;old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val +__longlong_as_double(assumed)));} while (assumed != old);return __longlong_as_double(old);}#endif#endif
继续编译: make all -j16
这时会出现下面的错误3::.build_release/lib/libcaffe.so:undefined
reference to `cudnnConvolutionBackwardFilter_v3’
解决方法:
将BVLC(https://github.com/BVLC/caffe)中的下列文件copy 到相应的文件夹:
./include/caffe/util/cudnn.hpp
./include/caffe/layers/cudnn_conv_layer.hpp
./include/caffe/layers/cudnn_relu_layer.hpp
./include/caffe/layers/cudnn_sigmoid_layer.hpp
./include/caffe/layers/cudnn_tanh_layer.hpp
./src/caffe/layers/cudnn_conv_layer.cpp
./src/caffe/layers/cudnn_conv_layer.cu
./src/caffe/layers/cudnn_relu_layer.cpp
./src/caffe/layers/cudnn_relu_layer.cu
./src/caffe/layers/cudnn_sigmoid_layer.cpp
./src/caffe/layers/cudnn_sigmoid_layer.cu
./src/caffe/layers/cudnn_tanh_layer.cpp
./src/caffe/layers/cudnn_tanh_layer.cu
make clean
make all -j16
make pycaffe -j16
编译成功。
2、对 run_pascal.sh 进行调试:
(1)首先准备好数据
(我是按照这篇博客准备的数据: http://blog.csdn.net/Xmo_jiao/article/details/77897109)
cd ~/Desktop
mkdir -p my_dataset
# augmented PASCAL VOC
cd my_dataset/
wget http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz # 1.3 GB
tar -zxvf benchmark.tgz
mv benchmark_RELEASE VOC_aug
# original PASCAL VOC 2012
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar # 2 GB
tar -xvf VOCtrainval_11-May-2012.tar
mv VOCdevkit/VOC2012 VOC2012_orig && rm -r VOCdevkit
(2)数据转换
因为pascal voc2012增强数据集的label是mat格式的文件,要把mat格式的label转为png格式的图片.
~/Desktop/my_dataset/VOC_aug/dataset
mkdir cls_png
cd ~/Desktop/deeplab_v2/voc2012/
./mat2png.py ~/Desktop/my_dataset/VOC_aug/dataset/cls /Desktop/my_dataset/VOC_aug/dataset/cls_png因为pascal voc2012原始数据集的label为三通道RGB图像,但是caffe最后一层softmax loss
层只能识别一通道的label,所以此处我们需要对原始数据集的label进行降维
cd ~/Desktop/my_dataset/VOC2012_orig
mkdir SegmentationClass_1D
cd ~/Desktop/deeplab_v2/voc2012/
./convert_labels.py ~/Desktop/my_dataset/VOC2012_orig/SegmentationClass/ ~/Desktop/my_dataset
/VOC2012_orig/ImageSets/Segmentation/trainval.txt ~/Desktop/my_dataset/VOC2012_orig/Segmentat
ionClass_1D/
(3)数据融合
此时已经处理好好pascal voc2012 增强数据集和pascal voc2012的原始数据集,为了便于train.txt等文件的调用,将两个文件夹数据合并到同一个文件中.现有文件目录如下:
![]()
现分别pascal voc2012增强数据集里的images和labels复制到增强数据集中,若重复则覆盖,合将并数据集的操作如下:
cp ~/Desktop/my_dataset/VOC2012_orig/SegmentationClass_1D/* ~/Desktop/my_dataset/VOC_aug/dataset/cls_png
cp ~/Desktop/my_dataset/VOC2012_orig/JPEGImages/* ~/Desktop/my_dataset/VOC_aug/dataset/img/
(4)文件名修改
对应train.txt文件的数据集文件名,修改文件名。
cd ~/Desktop/my_dataset/VOC_aug/dataset
mv ./img ./JPEGImages
那么我们这个阶段使用的数据已经整理完成
(5)修改并运行 run_pascal.sh
1)准备必要的文件
需要的文件从这里下载 deeplabv2 有两种模型(vgg,Res102),我用的vgg ,http://liangchiehchen.com/projects/DeepLab_Models.html
总共需要的文件如图所示:
下载的代码中 Desktop/deeplab_v2/voc2012/list 已经有了list文件,所以不用重新下载。
/Desktop/deeplab_v2/voc2012/config/deeplab_largeFOV中也有了相应的文件,所以也无需下载。
Desktop/deeplab_v2/voc2012/model/deeplab_largeFOV 里没有model,需要把下载好的model放入文件,如图所示:
至此,所有需要的文件全部完毕。
2)运行 train 和 test
进入/Desktop/deeplab_v2/voc2012,修改 run_pascal.sh 文件,主要是修改路径,我的修改后的文件如下:
#!/bin/sh## MODIFY PATH for YOUR SETTING
ROOT_DIR=/home/mmt/Desktop/my_datasetCAFFE_DIR=/home/mmt/Desktop/deeplab_v2/deeplab-public-ver2
CAFFE_BIN=${CAFFE_DIR}/build/tools/caffe.binEXP=.if [ "${EXP}" = "." ]; thenNUM_LABELS=21DATA_ROOT=${ROOT_DIR}/VOC_aug/dataset/
elseNUM_LABELS=0echo "Wrong exp name"
fi## Specify which model to train
########### voc12 ################
NET_ID=deeplab_largeFOV## Variables used for weakly or semi-supervisedly training
#TRAIN_SET_SUFFIX=
TRAIN_SET_SUFFIX=_aug#TRAIN_SET_STRONG=train
#TRAIN_SET_STRONG=train200
#TRAIN_SET_STRONG=train500
#TRAIN_SET_STRONG=train1000
#TRAIN_SET_STRONG=train750#TRAIN_SET_WEAK_LEN=5000DEV_ID=0####### Create dirsCONFIG_DIR=${EXP}/config/${NET_ID}
MODEL_DIR=${EXP}/model/${NET_ID}
mkdir -p ${MODEL_DIR}
LOG_DIR=${EXP}/log/${NET_ID}
mkdir -p ${LOG_DIR}
export GLOG_log_dir=${LOG_DIR}## RunRUN_TRAIN=1 #1时train
RUN_TEST=0 #1时test
RUN_TRAIN2=0
RUN_TEST2=0## Training #1 (on train_aug)if [ ${RUN_TRAIN} -eq 1 ]; then#LIST_DIR=${EXP}/listTRAIN_SET=train${TRAIN_SET_SUFFIX}if [ -z ${TRAIN_SET_WEAK_LEN} ]; thenTRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt > ${LIST_DIR}/${TRAIN_SET_WEAK}.txtelseTRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}_head${TRAIN_SET_WEAK_LEN}comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt | head -n ${TRAIN_SET_WEAK_LEN} > ${LIST_DIR}/${TRAIN_SET_WEAK}.txtfi#MODEL=${EXP}/model/${NET_ID}/init.caffemodel#echo Training net ${EXP}/${NET_ID}for pname in train solver; dosed "$(eval echo $(cat sub.sed))" \${CONFIG_DIR}/${pname}.prototxt > ${CONFIG_DIR}/${pname}_${TRAIN_SET}.prototxtdoneCMD="${CAFFE_BIN} train \--solver=${CONFIG_DIR}/solver_${TRAIN_SET}.prototxt \--gpu=${DEV_ID}"if [ -f ${MODEL} ]; thenCMD="${CMD} --weights=${MODEL}"fiecho Running ${CMD} && ${CMD}
fi## Test #1 specification (on val or test)if [ ${RUN_TEST} -eq 1 ]; then#for TEST_SET in val; doTEST_ITER=`cat ${EXP}/list/${TEST_SET}.txt | wc -l`MODEL=${EXP}/model/${NET_ID}/test.caffemodelif [ ! -f ${MODEL} ]; thenMODEL=`ls -t ${EXP}/model/${NET_ID}/train_iter_*.caffemodel | head -n 1`fi#echo Testing net ${EXP}/${NET_ID}FEATURE_DIR=${EXP}/features/${NET_ID}mkdir -p ${FEATURE_DIR}/${TEST_SET}/fc8mkdir -p ${FEATURE_DIR}/${TEST_SET}/fc9mkdir -p ${FEATURE_DIR}/${TEST_SET}/seg_scoresed "$(eval echo $(cat sub.sed))" \${CONFIG_DIR}/test.prototxt > ${CONFIG_DIR}/test_${TEST_SET}.prototxtCMD="${CAFFE_BIN} test \--model=${CONFIG_DIR}/test_${TEST_SET}.prototxt \--weights=${MODEL} \--gpu=${DEV_ID} \--iterations=${TEST_ITER}"echo Running ${CMD} && ${CMD}done
fi## Training #2 (finetune on trainval_aug)if [ ${RUN_TRAIN2} -eq 1 ]; then#LIST_DIR=${EXP}/listTRAIN_SET=trainval${TRAIN_SET_SUFFIX}if [ -z ${TRAIN_SET_WEAK_LEN} ]; thenTRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt > ${LIST_DIR}/${TRAIN_SET_WEAK}.txtelseTRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}_head${TRAIN_SET_WEAK_LEN}comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt | head -n ${TRAIN_SET_WEAK_LEN} > ${LIST_DIR}/${TRAIN_SET_WEAK}.txtfi#MODEL=${EXP}/model/${NET_ID}/init2.caffemodelif [ ! -f ${MODEL} ]; thenMODEL=`ls -t ${EXP}/model/${NET_ID}/train_iter_*.caffemodel | head -n 1`fi#echo Training2 net ${EXP}/${NET_ID}for pname in train solver2; dosed "$(eval echo $(cat sub.sed))" \${CONFIG_DIR}/${pname}.prototxt > ${CONFIG_DIR}/${pname}_${TRAIN_SET}.prototxtdoneCMD="${CAFFE_BIN} train \--solver=${CONFIG_DIR}/solver2_${TRAIN_SET}.prototxt \--weights=${MODEL} \--gpu=${DEV_ID}"echo Running ${CMD} && ${CMD}
fi## Test #2 on official test setif [ ${RUN_TEST2} -eq 1 ]; then#for TEST_SET in val test; doTEST_ITER=`cat ${EXP}/list/${TEST_SET}.txt | wc -l`MODEL=${EXP}/model/${NET_ID}/test2.caffemodelif [ ! -f ${MODEL} ]; thenMODEL=`ls -t ${EXP}/model/${NET_ID}/train2_iter_*.caffemodel | head -n 1`fi#echo Testing2 net ${EXP}/${NET_ID}FEATURE_DIR=${EXP}/features2/${NET_ID}mkdir -p ${FEATURE_DIR}/${TEST_SET}/fc8mkdir -p ${FEATURE_DIR}/${TEST_SET}/crfsed "$(eval echo $(cat sub.sed))" \${CONFIG_DIR}/test.prototxt > ${CONFIG_DIR}/test_${TEST_SET}.prototxtCMD="${CAFFE_BIN} test \--model=${CONFIG_DIR}/test_${TEST_SET}.prototxt \--weights=${MODEL} \--gpu=${DEV_ID} \--iterations=${TEST_ITER}"echo Running ${CMD} && ${CMD}done
fi
接下来运行代码:
Train:
~/Desktop/deeplab_v2/voc2012
sh ./run_pascal.sh
运行结果如下:
Test:
将相应变量改为1:
~/Desktop/deeplab_v2/voc2012
sh ./run_pascal.sh
运行结果如下:
因为结果保存的是mat文件,如果想转换成png的形式,运行:
cd ~/Desktop/deeplab_v2/voc2012
修改create_labels_21.py的路径,然后此目录运行:
python create_labels_21.py
因为训练一会,我就暂停了,所以test的结果不好,而且图像的分割后的尺寸变了,不知道什么原因,不过经过densecrf后会变回来。
(6)修改并运行 run_densecrf.sh
1)首先对densecrf进行编译。
cd ~/Desktop/deeplab_v2/deeplab-public-ver2/densecrf/
make
有许多warning,但是没出错,不用管。
2)数据整理
因为densecrf只识别ppm格式的图像,所以要转换格式。进入/Desktop/deeplab_v2/deeplab-public-ver2/densecrf/my_script,里面有自带的修改ppm 的MATLAB程序,修改路径,直接运行即可。
代码如下:
% save jpg images as bin file for cpp
%
is_server = 1;dataset = 'voc2012'; %'coco', 'voc2012'if is_serverif strcmp(dataset, 'voc2012')img_folder = '/home/mmt/Desktop/my_dataset/VOC_aug/dataset/JPEGImages'save_folder = '/home/mmt/Desktop/my_dataset/VOC_aug/dataset/PPMImages';elseif strcmp(dataset, 'coco')img_folder = '/rmt/data/coco/JPEGImages';save_folder = '/rmt/data/coco/PPMImages';end
elseimg_folder = '../img';save_folder = '../img_ppm';
endif ~exist(save_folder, 'dir')mkdir(save_folder);
endimg_dir = dir(fullfile(img_folder, '*.jpg'));for i = 1 : numel(img_dir)fprintf(1, 'processing %d (%d)...\n', i, numel(img_dir));img = imread(fullfile(img_folder, img_dir(i).name));img_fn = img_dir(i).name(1:end-4);save_fn = fullfile(save_folder, [img_fn, '.ppm']);imwrite(img, save_fn);
end
2)接下来,修改 run_densecrf.sh, 注意把 MODEL_NAME=deeplab_largeFOV修改了,原文件少了一个 p。
DATASET=voc2012 修改;
SAVE_DIR=/home/mmt/Desktop/deeplab_v2/${DATASET}/res/${FEATURE_NAME}/${MODEL_NAME}/${TEST_SET}
修改;
CRF_DIR=/home/mmt/Desktop/deeplab_v2/deeplab-public-ver2/densecrf 修改;if [ ${DATASET} == "voc2012" ]
thenIMG_DIR_NAME=VOC_aug/dataset 修改;FEATURE_DIR=/home/mmt/Desktop/deeplab_v2/${DATASET}/${FEATURE_NAME}/${MODEL_NAME}/${TEST_SET}/${FEATURE_TYPE} 修改;
同时把一些不需要的语句都注释掉,要不然容易出错,显示找不到文件。
修改后的文件如下:
#!/bin/bash ###########################################
# You can either use this script to generate the DenseCRF post-processed results
# or use the densecrf_layer (wrapper) in Caffe
###########################################
DATASET=voc2012
LOAD_MAT_FILE=1MODEL_NAME=deeplab_largeFOVTEST_SET=val #val, test# the features folder save the features computed via the model trained with the train set
# the features2 folder save the features computed via the model trained with the trainval set
FEATURE_NAME=features #features, features2
FEATURE_TYPE=fc8# specify the parameters
MAX_ITER=10Bi_W=4
Bi_X_STD=49
Bi_Y_STD=49
Bi_R_STD=5
Bi_G_STD=5
Bi_B_STD=5POS_W=3
POS_X_STD=3
POS_Y_STD=3#######################################
# MODIFY THE PATY FOR YOUR SETTING
#######################################
SAVE_DIR=/home/mmt/Desktop/deeplab_v2/${DATASET}/res/${FEATURE_NAME}/${MODEL_NAME}/${TEST_SET}/${FEATURE_TYPE}/post_densecrf_W${Bi_W}_XStd${Bi_X_STD}_RStd${Bi_R_STD}_PosW${POS_W}_PosXStd${POS_X_STD}echo "SAVE TO ${SAVE_DIR}"CRF_DIR=/home/mmt/Desktop/deeplab_v2/deeplab-public-ver2/densecrf#if [ ${DATASET} == "voc2012" ]
#thenIMG_DIR_NAME=VOC_aug/dataset
#elif [ ${DATASET} == "coco" ]
#then# IMG_DIR_NAME=coco
#elif [ ${DATASET} == "voc10_part" ]
#then# IMG_DIR_NAME=pascal/VOCdevkit/VOC2012
#fi# NOTE THAT the densecrf code only loads ppm images
IMG_DIR=/home/mmt/Desktop/my_dataset/${IMG_DIR_NAME}/PPMImages#if [ ${LOAD_MAT_FILE} == 1 ]
#then# the features are saved in .mat formatCRF_BIN=${CRF_DIR}/prog_refine_pascal_v4FEATURE_DIR=/home/mmt/Desktop/deeplab_v2/${DATASET}/${FEATURE_NAME}/${MODEL_NAME}/${TEST_SET}/${FEATURE_TYPE}
#else# the features are saved in .bin format (has called SaveMatAsBin.m in the densecrf/my_script)# CRF_BIN=${CRF_DIR}/prog_refine_pascal# FEATURE_DIR=/home/mmt/Desktop/deeplab_v2/${DATASET}/${FEATURE_NAME}/${MODEL_NAME}/${TEST_SET}/${FEATURE_TYPE}/bin
#fimkdir -p ${SAVE_DIR}# run the program
${CRF_BIN} -id ${IMG_DIR} -fd ${FEATURE_DIR} -sd ${SAVE_DIR} -i ${MAX_ITER} -px ${POS_X_STD} -py ${POS_Y_STD} -pw ${POS_W} -bx ${Bi_X_STD} -by ${Bi_Y_STD} -br ${Bi_R_STD} -bg ${Bi_G_STD} -bb ${Bi_B_STD} -bw ${Bi_W}
进入文件路径,运行程序,结果如下图:
cd ~/Desktop/deeplab_v2/voc2012/
sh sh ./run_densecrf.sh
3)然后运行 /home/mmt/crf/deeplab-public-ver2/densecrf/my_script/GetDenseCRFResult.m把bin生成图片格式
注意修改文件路径(GetDenseCRFResult.m,SetupEnv在/deeplab_v2/deeplab-public-ver2/matlab/my_script中),
两个程序的代码如下:
GetDenseCRFResult.m
% compute the densecrf result (.bin) to png
%addpath('/home/mmt/Desktop/deeplab_v2/deeplab-public-ver2/matlab/my_script');
SetupEnv;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% You do not need to change values below
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if is_serverif learn_crfpost_folder = sprintf('post_densecrf_W%d_XStd%d_RStd%d_PosW%d_PosXStd%d_ModelType%d_Epoch%d', bi_w, bi_x_std, bi_r_std, pos_w, pos_x_std, model_type, epoch);map_folder = fullfile('/home/mmt/Desktop/deeplab_v2', dataset, 'densecrf', 'res', feature_name, model_name, testset, feature_type, post_folder); save_root_folder = fullfile('/home/mmt/Desktop/deeplab_v2', dataset, 'res', feature_name, model_name, testset, feature_type, post_folder); ;elsepost_folder = sprintf('post_densecrf_W%d_XStd%d_RStd%d_PosW%d_PosXStd%d', bi_w, bi_x_std, bi_r_std, pos_w, pos_x_std);map_folder = fullfile('/home/mmt/Desktop/deeplab_v2', dataset, 'res', feature_name, model_name, testset, feature_type, post_folder); save_root_folder = map_folder;end
else map_folder = '../result';
endmap_dir = dir(fullfile(map_folder, '*.bin'));fprintf(1,' saving to %s\n', save_root_folder);if strcmp(dataset, 'voc2012')seg_res_dir = [save_root_folder '/results/VOC2012/'];
elseif strcmp(dataset, 'coco')seg_res_dir = [save_root_folder, '/results/COCO2014/'];
elseerror('Wrong dataset!');
endsave_result_folder = fullfile(seg_res_dir, 'Segmentation', [id '_' testset '_cls']);if ~exist(save_result_folder, 'dir')mkdir(save_result_folder);
endfor i = 1 : numel(map_dir)fprintf(1, 'processing %d (%d)...\n', i, numel(map_dir));map = LoadBinFile(fullfile(map_folder, map_dir(i).name), 'int16');img_fn = map_dir(i).name(1:end-4);imwrite(uint8(map), colormap, fullfile(save_result_folder, [img_fn, '.png']));
end
SetupEnv.m
% set up the environment variables
%clear all; close all;
load('./pascal_seg_colormap.mat');is_server = 1;crf_load_mat = 1; % the densecrf code load MAT files directly (no call SaveMatAsBin.m)% used ONLY by DownSampleFeature.m
learn_crf = 0; % NOT USED. Set to 0is_mat = 1; % the results to be evaluated are saved as mat (1) or png (0)
has_postprocess = 0; % has done densecrf post processing (1) or not (0)
is_argmax = 0; % the output has been taken argmax already (e.g., coco dataset). % assume the argmax takes C-convention (i.e., start from 0)debug = 0; % if debug, show some results% vgg128_noup (not optimized well), aka DeepLab
% bi_w = 5, bi_x_std = 50, bi_r_std = 10% vgg128_ms_pool3, aka DeepLab-MSc
% bi_w = 3, bi_x_std = 95, bi_r_std = 3% vgg128_noup_pool3_cocomix, aka DeepLab-COCO
% bi_w = 5, bi_x_std = 67, bi_r_std = 3%% these are used for the bounding box weak annotation experiments (i.e., to generate the Bbox-Seg)
% erode_gt (bbox)
% bi_w = 41, bi_x_std = 33, bi_r_std = 4% erode_gt/bboxErode20
% bi_w = 45, bi_x_std = 37, bi_r_std = 3, pos_w = 15, pos_x_std = 3%
% initial or default values for crf
%% 这几个参数要修改与run_densecrf.sh中的一致。
bi_w = 4;
bi_x_std = 49;
bi_r_std = 5;pos_w = 3;
pos_x_std = 3;%
dataset = 'voc2012'; %'voc12', 'coco' 修改
trainset = 'train_aug'; % not used
testset = 'val'; %'val', 'test'model_name = 'deeplab_largeFOV'; % 修改feature_name = 'features';
feature_type = 'fc8'; % fc8 / crfid = 'comp6';%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% used for cross-validation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rng(10)% downsampling files for cross-validation
down_sample_method = 2; % 1: equally sample with "down_sample_rate", 2: randomly pick "num_sample" samples
down_sample_rate = 8;
num_sample = 100; % number of samples used for cross-validation% ranges for cross-validation
range_pos_w = [3];
range_pos_x_std = [3];range_bi_w = [5];
range_bi_x_std = [49];
range_bi_r_std = [4 5];
4)至此,deeplabv2 程序已调试完。
总结,尝试过很多坑,终于除了结果。
这篇关于Deeplab v2 调试全过程(Ubuntu 16.04+cuda8.0)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!