如何使用KdTree进行搜索(How to use a KdTree to search)

2023-10-20 19:38

本文主要是介绍如何使用KdTree进行搜索(How to use a KdTree to search),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本教程中,我们将详细介绍如何使用KdTree来查找特定点或位置的K个最近邻居,然后我们将继续介绍如何在用户指定的半径范围内找到所有邻居(在本例中为随机) 。

#理论引入

kd树或k维树是计算机科学中用于在具有k维的空间中组织若干点的数据结构。这是一个二叉搜索树,其他约束条件是强加给它的。Kd树对于范围和最近的邻居搜索非常有用。就我们的目的而言,我们通常只会在三维空间中处理点云,所以我们所有的kd树都是三维的。kd树的每个级别都使用与相应轴垂直的超平面沿特定维度分割所有的孩子。在树的根部,所有的孩子都将根据第一维进行分割(即,如果第一维坐标小于根,它将在左子树中,并且如果它大于根,则显然将在正确的子树)。树下的每一层在下一个维度上分开,一旦所有其他维度都用尽,则返回到第一维。构建kd树的最有效的方法是使用像Quick Sort一样使用的分区方法将中间点放在根上,并将所有具有较小一维值的东西放在左边,并且放大到右边。然后,在左侧和右侧的子树上重复此过程,直到要分区的最后一棵树仅由一个元素组成。

来自Wikipedia:

一个二维kd树的例子
这是一个二维kd树的例子

这是最近邻居搜索工作的一个小时的示范。

#代码
用你最喜欢的编辑器创建一个名为kdtree_search.cpp的文件,并在里面放置以下内容:

#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>#include <iostream>
#include <vector>
#include <ctime>int
main (int argc, char** argv)
{srand (time (NULL));pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);// Generate pointcloud datacloud->width = 1000;cloud->height = 1;cloud->points.resize (cloud->width * cloud->height);for (size_t i = 0; i < cloud->points.size (); ++i){cloud->points[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);cloud->points[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);cloud->points[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);}pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;kdtree.setInputCloud (cloud);pcl::PointXYZ searchPoint;searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);// K nearest neighbor searchint K = 10;std::vector<int> pointIdxNKNSearch(K);std::vector<float> pointNKNSquaredDistance(K);std::cout << "K nearest neighbor search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z<< ") with K=" << K << std::endl;if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 ){for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)std::cout << "    "  <<  cloud->points[ pointIdxNKNSearch[i] ].x << " " << cloud->points[ pointIdxNKNSearch[i] ].y << " " << cloud->points[ pointIdxNKNSearch[i] ].z << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;}// Neighbors within radius searchstd::vector<int> pointIdxRadiusSearch;std::vector<float> pointRadiusSquaredDistance;float radius = 256.0f * rand () / (RAND_MAX + 1.0f);std::cout << "Neighbors within radius search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z<< ") with radius=" << radius << std::endl;if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 ){for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)std::cout << "    "  <<  cloud->points[ pointIdxRadiusSearch[i] ].x << " " << cloud->points[ pointIdxRadiusSearch[i] ].y << " " << cloud->points[ pointIdxRadiusSearch[i] ].z << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;}return 0;
}

#说明
下面的代码首先将rand()与系统时间联系起来,然后用随机数据创建并填充PointCloud。

  srand (time (NULL));pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);// Generate pointcloud datacloud->width = 1000;cloud->height = 1;cloud->points.resize (cloud->width * cloud->height);for (size_t i = 0; i < cloud->points.size (); ++i){cloud->points[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);cloud->points[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);cloud->points[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);}

下一个代码创建我们的kdtree对象,并将我们随机创建的云作为输入。然后我们创建一个分配随机坐标的“searchPoint”。

  pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;kdtree.setInputCloud (cloud);pcl::PointXYZ searchPoint;searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);

现在我们创建一个整数(并设置它等于10)和两个向量来存储我们搜索到的最近邻居。

  // K nearest neighbor searchint K = 10;std::vector<int> pointIdxNKNSearch(K);std::vector<float> pointNKNSquaredDistance(K);std::cout << "K nearest neighbor search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z<< ") with K=" << K << std::endl;

假设我们的KdTree返回多于0个最接近的邻居,它将把所有10个最近邻居的位置打印到我们的随机“searchPoint”中,这个“searchPoint”被存储在我们以前创建的向量中。

  if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 ){for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)std::cout << "    "  <<  cloud->points[ pointIdxNKNSearch[i] ].x << " " << cloud->points[ pointIdxNKNSearch[i] ].y << " " << cloud->points[ pointIdxNKNSearch[i] ].z << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;}

现在我们的代码演示了在某个(随机生成的)半径内找到给定的“searchPoint”的所有邻居。它再次创建2个向量来存储关于我们的邻居的信息。

  // Neighbors within radius searchstd::vector<int> pointIdxRadiusSearch;std::vector<float> pointRadiusSquaredDistance;float radius = 256.0f * rand () / (RAND_MAX + 1.0f);

再次,像以前一样,如果我们的KdTree在指定的半径范围内返回多于0个邻居,它将打印出已存储在我们向量中的这些点的坐标。

  if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 ){for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)std::cout << "    "  <<  cloud->points[ pointIdxRadiusSearch[i] ].x << " " << cloud->points[ pointIdxRadiusSearch[i] ].y << " " << cloud->points[ pointIdxRadiusSearch[i] ].z << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;}

#编译和运行程序
将下面的行添加到您的CMakeLists.txt文件中:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(kdtree_search)find_package(PCL 1.2 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (kdtree_search kdtree_search.cpp)
target_link_libraries (kdtree_search ${PCL_LIBRARIES})

制作好可执行文件之后,就可以运行它了。简单地做:

./kdtree_search

一旦你运行它,你应该看到类似的东西:

K nearest neighbor search at (455.807 417.256 406.502) with K=10494.728 371.875 351.687 (squared distance: 6578.99)506.066 420.079 478.278 (squared distance: 7685.67)368.546 427.623 416.388 (squared distance: 7819.75)474.832 383.041 323.293 (squared distance: 8456.34)470.992 334.084 468.459 (squared distance: 10986.9)560.884 417.637 364.518 (squared distance: 12803.8)466.703 475.716 306.269 (squared distance: 13582.9)456.907 336.035 304.529 (squared distance: 16996.7)452.288 387.943 279.481 (squared distance: 17005.9)476.642 410.422 268.057 (squared distance: 19647.9)
Neighbors within radius search at (455.807 417.256 406.502) with radius=225.932494.728 371.875 351.687 (squared distance: 6578.99)506.066 420.079 478.278 (squared distance: 7685.67)368.546 427.623 416.388 (squared distance: 7819.75)474.832 383.041 323.293 (squared distance: 8456.34)470.992 334.084 468.459 (squared distance: 10986.9)560.884 417.637 364.518 (squared distance: 12803.8)466.703 475.716 306.269 (squared distance: 13582.9)456.907 336.035 304.529 (squared distance: 16996.7)452.288 387.943 279.481 (squared distance: 17005.9)476.642 410.422 268.057 (squared distance: 19647.9)499.429 541.532 351.35 (squared distance: 20389)574.418 452.961 334.7 (squared distance: 20498.9)336.785 391.057 488.71 (squared distance: 21611)319.765 406.187 350.955 (squared distance: 21715.6)528.89 289.583 378.979 (squared distance: 22399.1)504.509 459.609 541.732 (squared distance: 22452.8)539.854 349.333 300.395 (squared distance: 22936.3)548.51 458.035 292.812 (squared distance: 23182.1)546.284 426.67 535.989 (squared distance: 25041.6)577.058 390.276 508.597 (squared distance: 25853.1)543.16 458.727 276.859 (squared distance: 26157.5)613.997 387.397 443.207 (squared distance: 27262.7)608.235 467.363 327.264 (squared distance: 32023.6)506.842 591.736 391.923 (squared distance: 33260.3)529.842 475.715 241.532 (squared distance: 36113.7)485.822 322.623 244.347 (squared distance: 36150.5)362.036 318.014 269.201 (squared distance: 37493.6)493.806 600.083 462.742 (squared distance: 38032.3)392.315 368.085 585.37 (squared distance: 38442.9)303.826 428.659 533.642 (squared distance: 39392.8)616.492 424.551 289.524 (squared distance: 39556.8)320.563 333.216 278.242 (squared distance: 41804.5)646.599 502.256 424.46 (squared distance: 43948.8)556.202 325.013 568.252 (squared distance: 44751)291.27 497.352 515.938 (squared distance: 45463.9)286.483 322.401 495.377 (squared distance: 45567.2)367.288 550.421 550.551 (squared distance: 46318.6)595.122 582.77 394.894 (squared distance: 46938.1)256.784 499.401 379.931 (squared distance: 47064.1)430.782 230.854 293.829 (squared distance: 48067.2)261.051 486.593 329.854 (squared distance: 48612.7)602.061 327.892 545.269 (squared distance: 48632.4)347.074 610.994 395.622 (squared distance: 49475.6)482.876 284.894 583.888 (squared distance: 49718.6)356.962 247.285 514.959 (squared distance: 50423.7)282.065 509.488 516.216 (squared distance: 50730.4)

How to use a KdTree to search

这篇关于如何使用KdTree进行搜索(How to use a KdTree to search)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249290

相关文章

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT